Short circuits currents comparison of 6 (10) kV and 20 kV.

2020 ◽  
Vol 14 (1) ◽  
pp. 21-26
Author(s):  
S. SKRYPNYK ◽  
◽  
A. SHEINA ◽  

Most failures in electrical installations are caused by short circuits (short circuits), which occur as a result of a failure in the electrical strength of the insulation of the conductive parts. A short circuit is an electrical connection of two points of an electric circuit with different values of potential, which is not provided by the design of the device, which interferes with its normal operation. Short circuits may result from a failure of the insulation of the current-carrying elements or the mechanical contact of the non- insulated elements. Also called a short circuit is a condition where the load resistance is less than the internal resistance of the power source. The reasons for such violations are various: aging of insulation, breakages of wires of overhead transmission lines, mechanical damages of isolation of cable lines at ground works, lightning strikes in the transmission line and others. Most often, short-circuits occur through transient resistance, such as through the resistance of an electric arc that occurs at the point of damage to the insulation. Sometimes there are metallic short circuits in which the resistance of the electric arc is very small. The study of short circuits in the power grid is a major step in the design of modern electrical networks. The research is conducted using computer software, first by modeling the system and then simulating errors. A malfunction usually leads to an increase in the current flowing in the lines, and failure to provide reliable protection can result in damage to the power unit. Thus, short-circuit calculations are the primary consideration when designing, upgrading, or expanding a power system. The three-phase short circuit is the least likely. However, in many cases, the three-phase short circuit is associated with the most severe consequences, as it causes the highest power imbalances on the shafts of the generators. The study of transients begins with the mode of three-phase closure due to its relative simplicity in comparison with other types of asymmetry. In most cases, the analysis and calculation of the transient regime of the electrical system involves the preparation of a calculated scheme of substitution, in which the parameters of its elements are determined in named or relative units. The electrical substitution circuitry is used to further study the transients in the power system. The definition of electrical and electromagnetic quantities in relative units is widely used in the theory of electric machines. This is because it significantly simplifies the theoretical calculations and gives the results a generalized view in the practical calculations of currents and residual voltages at the short circuit. By the relative value of any value is understood as its relation to another value of the same name, taken as the base. So, before presenting any quantities in relative units, we need to choose the basic units. In the electrical system with increased voltages, the overall load capacity of the network increases, which in turn makes it possible to supply high-quality electrical energy over a greater distance. In the process of comparing the type of transmission lines, it should be noted that the advantages of the cable transmission line. According to the results of the calculation of short-circuit currents, it can be concluded that in networks with a larger line cross-section and a higher voltage, the short-circuit currents are larger. Thus, during the transition of the electric networks to the higher voltage class of 20 kV, the currents of the KZ increased by 43% compared to the 6 kV electric network. This analysis shows that the importance of reliable power supply in the power supply system for high voltage classes must be high and have equipment to prevent emergencies. In the future, it is planned to develop a systematic calculation of short-circuit currents for a number of transmission lines and to conduct mathematical modeling in the system of applications for the study of transient processes at short circuits.

Author(s):  
Harshal Vilas Patil

Now-a-days the demand of electricity or power areincreases day by day this results to transmits more power byIncreasing the transmission line capacity from one place to theother place. But during the transmission some faults areoccurred in the system, such as L-L fault (line to line), 1L-Gfault (single line to ground) and 2L-G fault (double line toground). These faults affect the power system equipmentswhich are connected to it. The main aim of this paper is tostudy or analysis of faults and also identifies the effect of thefault in transmission line along with bus system which isconnected to transmission line. Mainly the major faults in longtransmission lines is (L-G) single line to ground fault which areharmful to the electrical equipment. A proposed model intransmission line is simulated in MATLAB software to analysisand identified the faults. Fault block was taken from the sim-power system block library. The whole modeling andsimulation of different operating and different conditions offault on transmission line, their faults are L-G fault, 2L-Gfault, 3L-G fault and three line short circuit of the proposedwork is presented in this paper.


Author(s):  
V.B. Beliy ◽  

Reliable supply of consumers with electric energy largely depends on the reliability of power source function-ing. In the context of this paper it depends on synchronous generators operating in autonomous power supply sys-tems. In contrast to the power plant generators which are part of power systems and are protected from the loads by sufficiently large resistances, power supply systems withautonomous generators are characterized by rather low resistances. Abrupt changes in the supply load parameters, their own transient and emergency modes, for example, short circuits at the generator terminals, forcing excitation, etc. may lead to various failures in the synchronous gener-ator operation. This paper discusses the possibility of over-voltage in the valve excitation system of a synchronous generator with external three-phase short circuits. On the basis of analytical expressions describing the physical pro-cesses occurring in the excitation system of synchronous generators, the conditions for the occurrence of overvolt-ages are identified


2018 ◽  
Vol 7 (1.8) ◽  
pp. 144
Author(s):  
P Venkata Lakshmi ◽  
P N. S. Poojitha ◽  
Y Srinivasrao

Protection of transmission line is a complex in power system as the majority of the faults in power system are transmission faults. A proper protection is needed for transmission line for continuous power supply. To provide a strong as well as an efficient protection scheme, in this paper we are using wavelet technique and artificial neural network. By using these mentioned two techniques we can detect the faults in transmission line and also, we can classify the detected faults. Wavelet transform has strong mathematical, very fast and accurate tools for brief signal inside the transmission lines and synthetic neural network can make a unique between measured sign and associated signal that has different pattern. 


2012 ◽  
Vol 614-615 ◽  
pp. 1394-1400
Author(s):  
Wen Qing Yang ◽  
Wei Cao ◽  
Jian Kun Wu ◽  
Lin Chen

Power transmission is a key link in power system. As the increase of power supply, the transmission capacity of the lines should be enlarged too. In the developed area, the right-of-way for transmission line is hard to be obtained. And converting the existing HVAC overhead transmission lines using HVDC technology could enhance the transmission capability. There are three possible plans for different HVAC transmission lines: single-pole HVDC, bi-pole HVDC and tri-pole HVDC.


2021 ◽  
Vol 248 ◽  
pp. 300-311
Author(s):  
Roman Klyuev ◽  
Igor Bosikov ◽  
Oksana Gavrina

The paper presents the results of constructing effective relay protection in the power supply system of a mining and processing plant (MPP). A brief description of the MPP is given, the power supply and substitution circuits used to calculate the short-circuit currents are given. A statistical analysis of failures in the electric network of the MPP has been carried out, which makes it possible to draw conclusions about the nature of failures ranges. Analysis of the registered faults shows that a significant part of them are line-to-earth faults, which in most cases turn into multiphase short circuits, which are interrupted by overcurrent protection. In order to improve the efficiency and reliability of the relay protection, the power supply scheme of the MPP was refined and analyzed. The calculation of the short-circuit currents was made, which made it possible to calculate the settings of the relay protection and give recommendations on the place of its installation and adjustment in order to ensure the normal operation of electricity consumers. To reduce the number of failures to the cable insert on the line leaving the administrative and household complex (AHC), and to increase the reliability of power supply to consumers, it is advisable to divide the capacities of the existing 10 kV line into two parallel ones by laying a second line. It is recommended to install a current cut-off on the line outgoing to the AHC, the feasibility of the installation of which was shown by calculations. This will reduce the chance of failures to the cable gland. Data on the setting currents of overcurrent protection and current cut-off are given on the selectivity card.    


2020 ◽  
Vol 5 (4) ◽  
pp. 112-115
Author(s):  
Žaneta Eleschová ◽  
Marián Ivanič

<span lang="EN-GB">This paper analyses the impact of asymmetry of over-head power line parameters on short circuit currents when three-phase fault and phase-to-ground fault occur. The calculation results with consideration of an asymmetry of the power line parameters are confronted with the calculation in accordance with the Slovak standard STN EN 60909 which does not consider asymmetry of equipment parameters in the power system. The calculation of short-circuit conditions was carried out for two types of 400 kV power line towers on which is a considerably different arrangement of phase conductors.</span>


2020 ◽  
Vol 14 (1) ◽  
pp. 66-69
Author(s):  
V. KALINICHENKO ◽  
◽  
I. PRIDATKO ◽  

The calculation of the effective values of the short-circuit currents is carried out in order to determine the minimum value of the current of the two- phase short-circuit required to select the settings of the means of protection, as well as the maximum value of the current of the three-phase short-circuit required to test the switching equipment for the ability to switch off. In most studies, the calculation of short-circuit currents is carried out only taking into account the total resistance of the transformer substation and the cable network. They also take into account the maximum short-circuit power (100MVA) due to the use of high-voltage explosion-proof switchgear type KRUV-6 without taking into account the influence of the external network. An external network, in turn, may limit the short-circuit power below 100MVA. The calculation of the short-circuit power of the external system with regard to the network parameters was considered. The actual magnitude of this capacity differs from that accepted in the known calculations and is below these values due to the natural or artificial introduction of reactor reactance and causes an error of 10-40%. Remote short-circuits of the distribution network reduce the short-circuit power of the input terminals of the step-down transformers, and therefore the influence of the external network on the short-circuit currents in the district networks increases. This approach will allow the determination of short-circuit currents in the mine distribution networks with higher accuracy. This will reduce the risk of accidents in an explosive mining environment.


Sign in / Sign up

Export Citation Format

Share Document