scholarly journals Partial Pole Placement in LMI Region

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Liuli Ou ◽  
Shaobo Han ◽  
Yongji Wang ◽  
Shuai Dong ◽  
Lei Liu

A new approach for pole placement of single-input system is proposed in this paper. Noncritical closed loop poles can be placed arbitrarily in a specified convex region when dominant poles are fixed in anticipant locations. The convex region is expressed in the form of linear matrix inequality (LMI), with which the partial pole placement problem can be solved via convex optimization tools. The validity and applicability of this approach are illustrated by two examples.

10.14311/500 ◽  
2003 ◽  
Vol 43 (6) ◽  
Author(s):  
Taha H. S. Abdelaziz ◽  
M. Valášek

This paper deals with the direct solution of the pole placement problem for single-input linear systems using state-derivative feedback. This pole placement problem is always solvable for any controllable systems if all eigenvalues of the original system are nonzero. Then any arbitrary closed-loop poles can be placed in order to achieve the desired system performance. The solving procedure results in a formula similar to the Ackermann formula. Its derivation is based on the transformation of a linear single-input system into Frobenius canonical form by a special coordinate transformation, then solving the pole placement problem by state derivative feedback. Finally the solution is extended also for single-input time-varying control systems. The simulation results are included to show the effectiveness of the proposed approach.


1999 ◽  
Vol 302-303 ◽  
pp. 331-345 ◽  
Author(s):  
D. Calvetti ◽  
B. Lewis ◽  
L. Reichel

Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 212
Author(s):  
Ning He ◽  
Yichun Jiang ◽  
Lile He

An analytical model predictive control (MPC) tuning method for multivariable first-order plus fractional dead time systems is presented in this paper. First, the decoupling condition of the closed-loop system is derived, based on which the considered multivariable MPC tuning problem is simplified to a pole placement problem. Given such a simplification, an analytical tuning method guaranteeing the closed-loop stability as well as pre-specified time-domain performance is developed. Finally, simulation examples are provided to show the effectiveness of the proposed method.


Author(s):  
Taha H. S. Abdelaziz

This paper deals with the direct solution of the pole placement problem for single-input linear systems using proportional-derivative (PD) state feedback. This problem is always solvable for any controllable system. The explicit parametric expressions for the feedback gain controllers are derived which describe the available degrees of freedom offered by PD state feedback. These freedoms are utilized to obtain closed-loop systems with small gains. Its derivation is based on the transformation of linear system into control canonical form by a special coordinate transformation. The solving procedure results into a formula similar to Ackermann’s one. In the present work, both time-invariant and time-varying linear systems are treated. The effectiveness of the proposed method is demonstrated by the simulation examples of both time-invariant and time-varying systems.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yan Qi ◽  
Min Zhang ◽  
Zhiguo Yan

This paper deals with the problem of mixed H2/H∞ control for Itô-type stochastic time-delay systems. First, the H2/H∞ control problem for stochastic time-delay systems is presented, which considers the mean square stability, H2 control performance index, and the ability of disturbance attenuation of the closed-loop systems. Second, by choosing an appropriate Lyapunov–Krasoviskii functional and using matrix inequality technique, some sufficient conditions for the existence of state feedback H2/H∞ controller for stochastic time-delay systems are obtained in the form of linear matrix inequalities. Third, two convex optimization problems with linear matrix inequality constraints are formulated to design the optimal mixed H2/H∞ controller which minimizes the guaranteed cost of the closed-loop systems with known and unknown initial functions, and the corresponding algorithm is given to optimize H2/H∞ performance index. Finally, a numerical example is employed to show the effectiveness and feasibility of the proposed method.


Author(s):  
Brandon Hencey ◽  
Andrew Alleyne

This paper develops a new method of designing anti-windup compensators using the concept of robust pole placement using linear matrix inequality (LMI) regions. The anti-windup problem seeks to minimize the closed loop performance deterioration due to input nonlinearities such as saturation for a given linear time-invariant plant and controller. Existing LMI-based anti-windup synthesis techniques do not explicitly provide a method to account for robust pole placement. This paper suggests a LMI-based method that not only attempts to minimize performance deterioration, but also explicitly restricts the anti-windup closed loop dynamics to an admissible set. Finally, the techniques discussed in this paper are demonstrated on a hydraulic test bed.


2013 ◽  
Vol 423-426 ◽  
pp. 2869-2872
Author(s):  
Zun Hai Gao

The generalized Wonham controllable canonical form in single-input systems is presented and applied to pole placement of state derivative feedback. A new direct algorithm is proposed. The advantage of this algorithm is no need to compute the characteristic polynomial of the system. The theory and approach are introduced, and the general expression is obtained for the derivative feedback gain matrix of the single-input system.


2005 ◽  
Vol 11 (2) ◽  
pp. 225-243 ◽  
Author(s):  
Haiping Du ◽  
James Lam ◽  
Kam Yim Sze

In this paper we present an approach to design the non-fragile H ∞ controller for active vehicle suspensions. A quarter-car model with active suspension system is considered in this paper. By suitably formulating the sprung mass acceleration, suspension deflection and tire deflection as the optimization object and considering a priori norm-bounded controller gain variations, the non-fragile state-feedback H ∞ controller can be obtained by solving a linear matrix inequality. The designed controller not only can achieve the optimal performance for active suspensions but also preserves the closed-loop stability in spite of the controller gain variations.


Sign in / Sign up

Export Citation Format

Share Document