scholarly journals Photocatalytic Antibacterial Performance of Glass Fibers Thin Film Coated with N-DopedSnO2/TiO2

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Peerawas Kongsong ◽  
Lek Sikong ◽  
Sutham Niyomwas ◽  
Vishnu Rachpech

Both N-doped and undoped thin films of 3SnO2/TiO2composite were prepared, by sol-gel and dip-coating methods, and then calcined at 600°C for 2 hours. The films were characterized by FTIR, XRD, UV-Vis, SEM, and XPS, and their photocatalytic activities to degrade methylene blue in solution were determined, expecting these activities to correlate with the inactivation of bacteria, which was confirmed. The doped and undoped films were tested for activities against Gram-negativeEscherichia coli(E. coli) andSalmonella typhi(S. typhi), and Gram-positiveStaphylococcus aureus(S. aureus). The effects of doping on these composite films included reduced energy band gap, high crystallinity of anatase phase, and small crystallite size as well as increased photocatalytic activity and water disinfection efficiency.

2014 ◽  
Vol 608 ◽  
pp. 164-169
Author(s):  
Peerawas Kongsong ◽  
Lek Sikong ◽  
Sutham Niyomwas ◽  
Vishnu Rachpech

The Fe3+ and N–doped 3SnO2/TiO2 composite thin films and undoped films coated on glass fibers were prepared by sol–gel and dip–coating methods. The films were calcined at 600°C for 2 hour and characterized by XRD, SEM, EDS and XPS. The photocatalytic activity of the coated glass fibers was determined by means of degradation of a methylene blue (MB) solution and humic acid (HA). It was found that the optimized 20N/3SnO2/TiO2composite films exhibit a high photocatalytic activity and HA could be rapidly removed from water. The main factor affecting the HA degradation of 20N/3SnO2/TiO2 films is quantity of glass fibers loading, irradiation power of UV lamp and flow rate of water.


2010 ◽  
Vol 148-149 ◽  
pp. 1501-1506 ◽  
Author(s):  
Lek Sikong ◽  
Peerawas Kongsong ◽  
Vishnu Rachpech

The water disinfection efficiency of Fe3+ and N-doped 3SnO2/TiO2 composite and undoped films was investigated. The water containing E. coli with an initial concentration of 103 CFU/ml was treated by a photocatalytic reactor filled with 60 g of glass fibers coated with the catalytic films for 1-5 circulated cycles. The number of survival bacteria after treatment was evaluated with spread plate techniques. Furthermore, the photocatalytic reaction on degradation of methylene blue dye solution was also investigated in order to observe the correlation between the result of bacteria inactivation of the prepared films and that of photocatalytic activity on methylene blue degradation. It reveals that N-doping in the TiO2 composite films results in shifting absorption wavelength towards visible light, narrowing the energy band gap and acts as photo-generated electrons trapping site, leading to retardation of the electrons-holes recombination, while Fe3+ doping has a main effect on hindrance of anatase crystal growth of the composite films. Therefore, 20N/3SnO2/TiO2 composite thin film exhibits greater photocatalytic activity and disinfection efficiency than those of undoped and Fe3+ doped TiO2 films. It was found that the bacterial inactivation of the prepared films correlates closely to photocatalytic activity performed by degradation of methylene blue dye solution. The 20N/3SnO2/TiO2 composite film can kill E. coli 97% within 5 cycled water treatment (~93 min) while Fe3+/3SnO2/TiO2, undoped TiO2 and UV alone can kill only 62, 65 and 58%, respectively. The 20N/3SnO2/TiO2 films coated on glass fibers are expect to be applied as an antibacterial photocatalyst for water purification.


2008 ◽  
Vol 2008 ◽  
pp. 1-11 ◽  
Author(s):  
Mojtaba Nasr-Esfahani ◽  
Mohammad Hossein Habibi

New composite films (P25SGF-MC-Ag, MPC500SGF-MC-Ag, and ANPSGF-MC-Ag) have been synthesized by a modified sol-gel method using different particle sizes ofTiO2powder and silver addition. NanostructureTiO2/Ag composite thin films were prepared by a sol-gel spin and dip coating technique. while, by introducing methyl cellulose (MC) porous,TiO2/Ag films were obtained after calcining at a temperature of 500°C. The as-preparedTiO2andTiO2/Ag films were characterized by X-ray diffractometry, and scanning electron microscopy to reveal the structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methyl orange (MO) under UV irradiation. After 500°C calcination, the microstructure of MC-TiO2film without Ag addition exhibited a microstructure, while significant sintering effect was noticed with Ag additions and the films exhibited a porous microstructure. Nanostructure anatase-phaseTiO2can be observed with respect to the sharpening of XRD diffraction peaks. The photodegradation of porousTiO2deposited with5×10−4 mol Ag exhibited the best photocatalytic efficiency, where 69% methyl orange can be decomposed after UV exposure for 1 hour.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Rigoberto Regalado-Raya ◽  
Rubí Romero-Romero ◽  
Osmín Avilés-García ◽  
Jaime Espino-Valencia

Photocatalytic materials based on silica-titania (SiO2-TiO2) were synthesized by sol-gel and dip-coating method. TEOS and titanium butoxide were used as precursors of the silica-titania, respectively. A thin film with anatase phase was obtained on the surface of the support. The effect of variables as dispersion mechanism, immersion time, and number of treatment cycles were studied. The materials were characterized using X-ray diffraction, scanning electron microscopy, energy dispersion scanning, and N2 adsorption-desorption. The highest crystallinity of TiO2 on silica, high specific surface area in TiO2-SiO2 materials, and thin film formation were obtained by using a stirring plate and minimum immersion time. The so synthesized catalyst allowed the production of formaldehyde from the photocatalyzed methanol oxidation in a packed-bed reactor.


2017 ◽  
Vol 873 ◽  
pp. 32-36
Author(s):  
Thitinun Inmae ◽  
Lek Sikong ◽  
Kalayanee Kooptarnond

Lithium molybdate doped tungsten trioxide electrochromic films were prepared from tungsten trioxide precursor and lithium molybdate powder by sol-gel and dip coating methods on fluorine doped tin oxide glass. The films, which synthesized were flat and amorphous structure, which confirmed by x-ray diffraction patterns. From UV-vis transmittance spectra within the wavelength from 400 to 800 nm. and cyclic voltammogram at the applying a potential of 1.0 V (bleached state) to -1.0 V (colored state) in sulfuric acid 0.5 M solution. The doping lithium molybdate 10 mol% films showed good result in terms of transmittance modulation, high diffusion coefficient and optimal surface area. Therefore, doping lithium molybdate 10 mol% has better outcome when compared to undoped lithium molybdate.


2009 ◽  
Vol 24 (8) ◽  
pp. 2541-2546 ◽  
Author(s):  
Eisuke Yokoyama ◽  
Hironobu Sakata ◽  
Moriaki Wakaki

ZrO2 thin films containing silver nanoparticles were prepared using the sol-gel method with Ag to Zr molar ratios [Ag]/[Zr] = 0.11, 0.25, 0.43, 0.67, 1.00, 1.50, and 2.33. After dip coating on glass substrate, coated films were annealed at 200 and 300 °C in air. X-ray diffraction peaks corresponding to crystalline Ag were observed, but a specific peak corresponding to ZrO2 was not observed. At the molar ratio [Ag]/[Zr] = 0.25, the particle size of Ag distributed broadly centered at 17 nm for an annealing temperature of 200 °C and at 25 nm for 300 °C. The films annealed in air at 200 °C showed an absorption band centered at 450 nm because of the silver surface plasmon resonance, whereas films heated at 300 °C in air caused a red shift of the absorption to 500 nm. The absorption peak was analyzed using the effective dielectric function of Ag-ZrO2 composite films modeled with the Maxwell-Garnett expression.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
V. L. Chandraboss ◽  
B. Karthikeyan ◽  
J. Kamalakkannan ◽  
S. Prabha ◽  
S. Senthilvelan

The TiO2/SiO2 and ZnO/SiO2 composite films were prepared by sol-gel dip coating method. The surface morphology and crystal structure of thin films were characterized by means of scanning electron microscopy (SEM) with elementary dispersive X-ray analysis (EDX) and X-ray diffractometer (XRD). Optical properties of films have been investigated using ultraviolet and visible spectroscopy (UV-visible spectroscopy). The photocatalytic activity was established by testing the degradation and decolorization of methyl green (MG) from aqueous solution with artificial UV-light.


2009 ◽  
Vol 79-82 ◽  
pp. 1103-1106
Author(s):  
Hai Xia Hong ◽  
Yan Sheng Yin ◽  
Hong Feng Wang ◽  
Shou Gang Chen ◽  
Tao Liu ◽  
...  

Sol-gel TiO2 thin films undoped and doped with Ag-ions have been formed on 304ss by dip-coating method respectively. The Ag/TiO2 films are compact and have anatase phase with stable crystal structure and have a thickness of 50 nm approximately. The bactericidal rate of the Ag/TiO2 film against sulfate-reducing bacteria (SRB) strains reaches 97.1% when doping Ag+ with a percentage of 3%. The analysis of potentiodynamic polarization curves illustrates Ag/TiO2 film decreases the corrosion rate obviously.


1994 ◽  
Vol 9 (8) ◽  
pp. 2133-2137 ◽  
Author(s):  
Hideki Yoshioka

Thin films in the system (1 - x) PbTiO3−xLa2/3TiO3 were prepared by the sol-gel and dip-coating methods. Phases deposited in the films and the lattice parameters as a function of the composition were investigated by the x-ray diffraction method. The solid solutions with a perovskite structure were formed as a single phase with x up to 0.9. For the composition of x = 1.0, metastable La-Ti-O perovskite phase with a small amount of the impurity phase, La2Ti2O7, was obtained. Simulation of x-ray diffraction patterns based on the defect structure model shows that the structure of the La-Ti-O perovskite phase includes randomly distributed cation vacancies at the A-site, namely (La2/3□1/3)TiO3.


2012 ◽  
Vol 450-451 ◽  
pp. 701-705 ◽  
Author(s):  
Rong Fu Zheng ◽  
Hai Xia Hu ◽  
Ya Qin Fu

The compound photocatalytic materials of TiO2/SnO2 films with bilayer structure supported on polyacrylonitrile based carbon fiber (PAN-CF) substrates were prepared via the dip-coating technology, and Titanium dioxide (TiO2) and tin dioxide (SnO2) precursory sol were prepared by sol-gel method. Field emission scanning electron microscopy (FE-SEM), X-ray energy spectrum (EDS) and X-ray diffraction (XRD) were used to characterize the structure of materials, and methyl orange (MO) with concentration of 80mg/L as the target degradants was used to investigate the photocatalytic property of the composites under UV irradiation. The results revealed that the photocatalytic activity of composite is effectively enhanced result from the application of TiO2/SnO2 bilayer structure films, which can be considered as that the recombination of photo-induced electrons is restrained by SnO2 film effectively, and the 3#-TiO2/SnO2/CF exhibited optimum catalytic performance. In addition, the superiority of carbon fiber as carrier was played fully due to the generation of porous films, which is favorable to capture the intermediate products.


Sign in / Sign up

Export Citation Format

Share Document