scholarly journals A Local and Global Search Combined Particle Swarm Optimization Algorithm and Its Convergence Analysis

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Weitian Lin ◽  
Zhigang Lian ◽  
Xingsheng Gu ◽  
Bin Jiao

Particle swarm optimization algorithm (PSOA) is an advantage optimization tool. However, it has a tendency to get stuck in a near optimal solution especially for middle and large size problems and it is difficult to improve solution accuracy by fine-tuning parameters. According to the insufficiency, this paper researches the local and global search combine particle swarm algorithm (LGSCPSOA), and its convergence and obtains its convergence qualification. At the same time, it is tested with a set of 8 benchmark continuous functions and compared their optimization results with original particle swarm algorithm (OPSOA). Experimental results indicate that the LGSCPSOA improves the search performance especially on the middle and large size benchmark functions significantly.

2014 ◽  
Vol 1015 ◽  
pp. 737-740
Author(s):  
Hui Xia

Standard particle swarm algorithm for function optimization prone to local optimal and premature convergence, and thus the biological chemotaxis principle introduction to particle swarm optimization algorithm, this paper proposed an improved algorithm to maintain the diversity of the populationand the choice of key parameters. Simulation results show that, compared with the traditional particle swarm optimization algorithm, an improved particle swarm algorithm for dealing with complex multimodal function optimization problem can be significantly improved algorithm for global optimization.


2021 ◽  
Author(s):  
Gui Zhou ◽  
Hang Wang ◽  
Minjun Peng

Abstract In order to avoid the nuclear accidents during the operation of nuclear power plants, it is necessary to always monitor the status of relevant facilities and equipment. The premise of condition monitoring is that the sensor can provide sufficient and accurate operating parameters. Therefore, the sensor arrangement must be rationalized. As one of the nuclear auxiliary systems, the chemical and volume control system plays an important role in ensuring the safe operation of nuclear power plants. There are plenty of sensor measuring points arranged in the chemical and volume control system. These sensors are not only for detecting faults, but also for running and controlling services. Particle swarm algorithm has many applications in solving the problem of sensor layout optimization but the disadvantage of the basic particle swarm optimization algorithm is that the parameters are fixed, the particles are single, and it is easy to fall into the local optimization. In this paper, the basic particle swarm optimization algorithm is improved by Non-linearly adjusting inertia weight factor, asynchronously changing learning factor, and variating particle. The improved particle swarm optimization algorithm is used to optimize the sensor placement. The numerical analysis verified that a smaller number of sensors can meet the fault detection requirements of the chemical and volume control system in this paper, and Experiments have proved that the improved particle swarm algorithm can improve the basic particle swarm algorithm, which is easy to fall into the shortcomings of local optimization and single particles. This method has good applicability, and could be also used to optimize other systems with sufficient parameters and consistent objective function.


2013 ◽  
Vol 325-326 ◽  
pp. 1628-1631 ◽  
Author(s):  
Hong Zhou ◽  
Ke Luo

Be aimed at the problems that K-medoids algorithm is easy to fall into the local optimal value and basic particle swarm algorithm is easy to fall into the premature convergence, this paper joins the Simulated Annealing (SA) thought and proposes a novel K-medoids clustering algorithm based on Particle swarm optimization algorithm with simulated annealing. The new algorithm combines the quick optimization ability of particle swarm optimization algorithm and the probability of jumping property with SA, and maintains the characteristics that particle swarm algorithm is easy to realize, and improves the ability of the algorithm from local extreme value point. The experimental results show that the algorithm enhances the convergence speed and accuracy of the algorithm, and the clustering effect is better than the original k-medoids algorithm.


2013 ◽  
Vol 631-632 ◽  
pp. 1044-1050
Author(s):  
Feng An ◽  
Si Cong Yuan ◽  
Wei Dong Yan ◽  
Dong Hong Wang

Combining the thought of correlation degree analysis in the theory of grey, use of particle swarm algorithm, seeking it’s individual extreme value and global extreme value, and puts forward to the goal of mathematical model about more gray particle swarm optimization algorithm is presented, the algorithm is applied to speed reducer hoisting mechanism in the optimization of parameters. The optimization results show that the optimal parameters, than the original design of parameters for satisfactory results show the particle swarm optimization algorithm is used for gray hoisting mechanism optimized parameter design of gear reducer is effective and feasible.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Dong Yumin ◽  
Zhao Li

Quantum behaved particle swarm algorithm is a new intelligent optimization algorithm; the algorithm has less parameters and is easily implemented. In view of the existing quantum behaved particle swarm optimization algorithm for the premature convergence problem, put forward a quantum particle swarm optimization algorithm based on artificial fish swarm. The new algorithm based on quantum behaved particle swarm algorithm, introducing the swarm and following activities, meanwhile using the adaptive parameters, to avoid it falling into local extremum of population. The experimental results show the improved algorithm to improve the optimization ability of the algorithm.


2017 ◽  
pp. 203-209
Author(s):  
Pierfrancesco Raimondo

In the paper is proposed a procedure based on the particle swarm optimization algorithm for parameters estimation of sinewave signals as: amplitude, phase, frequency and offset. Differently from the classical method used to solve this problem (the sine-fitting algorithms), the proposed procedure considers the estimation problem as an optimization one. In fact, the particle swarm algorithm tends to global solution instead of a local solution. The proposed procedure preliminarily estimates the raw value of the parameters under investigation by a time analysis of the input signal. Successively, these values are used by the particle swarm algorithm for the final estimation result. The tests of the proposed procedure determine the most effective cost function for the algorithm and confirm that the achievable performances are in according with the sine fitting algorithm. Moreover, the execution time for the proposed procedure is lower than the sine fitting, making it an interesting alternative.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Lei Wang ◽  
Yongqiang Liu

The strengths and weaknesses of correlation algorithm, simulated annealing algorithm, and particle swarm optimization algorithm are studied in this paper. A hybrid optimization algorithm is proposed by drawing upon the three algorithms, and the specific application processes are given. To extract the current fundamental signal, the correlation algorithm is used. To identify the motor dynamic parameter, the filtered stator current signal is simulated using simulated annealing particle swarm algorithm. The simulated annealing particle swarm optimization algorithm effectively incorporates the global optimization ability of simulated annealing algorithm with the fast convergence of particle swarm optimization by comparing the identification results of asynchronous motor with constant torque load and step load.


2014 ◽  
Vol 1081 ◽  
pp. 358-362 ◽  
Author(s):  
Yu Xiang Zhang ◽  
Jian Hai Yang ◽  
Fu Hou Xu ◽  
Jia Zhao Chen

A damage identification method is proposed to identify the damage style and the damage parameters. By driving a pair of PZT patches out phase and in phase, the electric admittance of the PZT is obtained. The damage parameters are then identified from the changes of the admittance spectra caused by the appearance of damage. By comparing the identification result, the damage style can be determined and the damage parameters can be obtained. The middle basic particle swarm optimization algorithm is employed as a global search technique to back-calculate the damage. Experiments are carried out on beams. The results demonstrate that the proposed method is able to identify the damage style, and can effectively and reliably locate and quantify the damage in the beam.


2013 ◽  
Vol 475-476 ◽  
pp. 956-959 ◽  
Author(s):  
Hao Teng ◽  
Shu Hui Liu ◽  
Yue Hui Chen

In the model of flexible neural tree (FNT), parameters are usually optimized by particle swarm optimization algorithm (PSO). Because PSO has many shortcomings such as being easily trapped in local optimal solution and so on, an improved algorithm based on quantum-behaved particle swarm optimization (QPSO) is presented. It is combined with the factor of speed, gather and disturbance, so as to be used to optimize the parameters of FNT. This paper applies the improved quantum particle swarm optimization algorithm to the neural tree, and compares it with the standard particle swarm algorithm in the optimization of FNT. The result shows that the proposed algorithm is with a better expression, thus improves the performance of the FNT.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Bingsheng Chen ◽  
Huijie Chen ◽  
Mengshan Li

Feature selection can classify the data with irrelevant features and improve the accuracy of data classification in pattern classification. At present, back propagation (BP) neural network and particle swarm optimization algorithm can be well combined with feature selection. On this basis, this paper adds interference factors to BP neural network and particle swarm optimization algorithm to improve the accuracy and practicability of feature selection. This paper summarizes the basic methods and requirements for feature selection and combines the benefits of global optimization with the feedback mechanism of BP neural networks to feature based on backpropagation and particle swarm optimization (BP-PSO). Firstly, a chaotic model is introduced to increase the diversity of particles in the initial process of particle swarm optimization, and an adaptive factor is introduced to enhance the global search ability of the algorithm. Then, the number of features is optimized to reduce the number of features on the basis of ensuring the accuracy of feature selection. Finally, different data sets are introduced to test the accuracy of feature selection, and the evaluation mechanisms of encapsulation mode and filtering mode are used to verify the practicability of the model. The results show that the average accuracy of BP-PSO is 8.65% higher than the suboptimal NDFs model in different data sets, and the performance of BP-PSO is 2.31% to 18.62% higher than the benchmark method in all data sets. It shows that BP-PSO can select more distinguishing feature subsets, which verifies the accuracy and practicability of this model.


Sign in / Sign up

Export Citation Format

Share Document