scholarly journals Comparative Evaluation of Voids Present in Conventional and Capsulated Glass Ionomer Cements Using Two Different Conditioners: AnIn VitroStudy

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Mamta Kaushik ◽  
Roshni Sharma ◽  
Pallavi Reddy ◽  
Pallavi Pathak ◽  
Pooja Udameshi ◽  
...  

Thisin vitrostudy evaluated the presence of voids in powder-liquid and capsulated glass ionomer cement. 40 cavities were prepared on root surfaces of maxillary incisors and divided into four groups. Cavities were conditioned with glass ionomer cement liquid (GC Corporation, Tokyo, Japan) in Groups 1 and 3 and with dentin conditioner (GC Corporation, Tokyo, Japan) in Groups 2 and 4. Conventional powder-liquid glass ionomer cement (GC Fuji II, GC Corporation, Tokyo, Japan) was used as a restorative material in Groups 1 and 2. Capsulated glass ionomer cement (GC Fuji II, GC Corporation, Tokyo, Japan) was used in Groups 3 and 4. Samples were sectioned and viewed under stereomicroscope to check for the presence of voids within the cement and at the cement-tooth junction. Data was analyzed using one-way ANOVA and Tukey’s post hoc tests. Group 4 showed statistically significant results (P<0.05) when compared to Groups 1 and 2 for voids within the cement. However, for voids at the margins, the results were statistically insignificant.

2016 ◽  
Vol 40 (2) ◽  
pp. 136-140 ◽  
Author(s):  
Mustafa Altunsoy ◽  
Mehmet Tanrıver ◽  
Uğur Türkan ◽  
Mehmet Emin Uslu ◽  
Sibel Silici

Objective: To evaluate the effect of ethanolic extracts of propolis (EEP) addition in different proportions to glass ionomer cement (GIC) on microleakage and microhardness of GIC. Study design: The cement was divided into four groups: one using the original composition and three with 10%, 25%, and 50% EEP added to the liquid and then manipulated. For microleakage assessment, sixty primary molars were randomly divided into four groups (n=15). Standard Class II cavities were prepared and then filled with EEP in different proportions added to GICs. Microleakage test was performed using a dye penetration method. The data were analyzed using one-way ANOVA and Mann - Whitney U tests (α = 0.05). Disc shaped specimens were prepared from the tested GIC to determine Vickers hardness (VHN). The data were analyzed using one-way ANOVA and post hoc Tukey test (α = 0.05). Results: There were no statistically significant differences between the groups in terms of microleakage (p &gt; 0.05). There were statistically significant differences between the VHN values of groups (p &lt; 0.05). Increasing addition of EEP to GIC statistically significantly increased VHN value of GIC (p &lt; 0.05). Conclusions: The addition of EEP to GIC increased the microhardness of the GIC and did not adversely affect the microleakage. Thus, it might be used during routine dental practice due to its antibacterial properties


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1700
Author(s):  
Atsushi Kameyama ◽  
Aoi Saito ◽  
Akiko Haruyama ◽  
Tomoaki Komada ◽  
Setsuko Sugiyama ◽  
...  

This study aimed to examine the marginal seal between various commercial temporary restorative materials and exposed dentin/built-up composite. Sixty bovine incisors were cut above the cemento-enamel junction, and half of the dentin was removed to form a step, which was built up using flowable resin composite. The root canals were irrigated, filled with calcium hydroxide, and sealed using one of six temporary sealing materials (hydraulic temporary restorative material, temporary stopping material, zinc oxide eugenol cement, glass-ionomer cement, auto-cured resin-based temporary restorative material, and light-cured resin-based temporary restorative material) (n = 10 for each material). The samples were thermocycled 500 times and immersed in an aqueous solution of methylene blue. After 2 days, they were cut along the long axis of the tooth and the depth of dye penetration was measured at the dentin side and the built-up composite side. For the margins of the pre-endodontic resin composite build-up, the two resin-based temporary restorative materials showed excellent sealing. Hydraulic temporary restorative material had a moderate sealing effect, but the sealing effect of both zinc oxide eugenol cement and glass-ionomer cement was poorer.


2021 ◽  
Vol 10 (33) ◽  
pp. 2769-2772
Author(s):  
Arjun Sajjeev ◽  
Ashwini Tumkur Shivkumar ◽  
Sowmya Halasabalu Kalgeri

BACKGROUND Marginal integrity of glass ionomer as a restorative material is an important factor for the longevity of the restoration. Class V and cervical abrasions are the most critical and challenging lesions for restorations. The choice of material for restoring class V and cervical abrasions is glass ionomer cement (GIC). Sensitivity to moisture contact during the early setting stages is the drawback of GIC. To overcome the drawback, modifications of glass ionomer cement were made by the addition of chitosan. Chitosan (CH) is a natural linear polysaccharide obtained partially and fully by deacetylated chitin compounds, which are found in crab and shrimp shells, with properties like nontoxicity, biodegradability, bioadhesive, biocompatibility, and biorenewabilty which has led to its use in various fields. Thus, this study intended to evaluate the microleakage of conventional glass ionomer cement and chitosan modified glass ionomer cement using a spectrophotometer. METHODS 60 teeth extracted for orthodontic propose were selected for the study and randomly divided into two groups, class V cavities were prepared on the buccal surface and samples were restored with conventional glass ionomer cement and chitosan modified glass ionomer cement respectively, teeth were immersed in 0.5 % methylene blue for 24 hours and assessed using a spectrophotometer. RESULTS The data were analysed using the Unpaired T - test, and with statistical package for social sciences (SPSS) for Windows, version 25.0 (IBM Corp., Armonk, N.Y., USA). The confidence interval was set at 95 % and values of P < 0.05 were interpreted as statistically significant. CONCLUSIONS The study concluded that the addition of chitosan improves the mechanical properties of conventional glass ionomer cement, and a spectrophotometer can be used as a better evaluation tool in assessing microleakage. KEY WORDS Chitosan Modified GIC, Glass Ionomer Cement, Microleakage, Spectrophotometer


Sign in / Sign up

Export Citation Format

Share Document