light use efficiency model
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 1)

2020 ◽  
Vol 12 (20) ◽  
pp. 3355
Author(s):  
Yanlian Zhou ◽  
Xiaocui Wu ◽  
Weimin Ju ◽  
Leiming Zhang ◽  
Zhi Chen ◽  
...  

Solar radiation significantly affects terrestrial gross primary productivity (GPP). However, the relationship between GPP and solar radiation is nonlinear because it is affected by diffuse radiation. Solar radiation has undergone a shift from darker to brighter values over the past 30 years in China. However, the effects on GPP of variation in solar radiation because of changes in diffuse radiation are unclear. In this study, national global radiation in conjunction with other meteorological data and remotely sensed data were used as input into a two-leaf light use efficiency model (TL-LUE) that simulated GPP separately for sunlit and shaded leaves for the period from 1981 to 2012. The results showed that the nationwide annual global radiation experienced a significant reduction (2.18 MJ m−2 y−1; p < 0.05) from 1981 to 2012, decreasing by 1.3% over this 32-year interval. However, the nationwide annual diffuse radiation increased significantly (p < 0.05). The reduction in global radiation from 1981 to 2012 decreased the average annual GPP of terrestrial ecosystems in China by 0.09 Pg C y−1, whereas the gain in diffuse radiation from 1981 to 2012 increased the average annual GPP in China by about 50%. Therefore, the increase in canopy light use efficiency under higher diffuse radiation only partially offsets the loss of GPP caused by lower global radiation.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1524
Author(s):  
Saïd Khabba ◽  
Salah Er-Raki ◽  
Jihad Toumi ◽  
Jamal Ezzahar ◽  
Bouchra Ait Hssaine ◽  
...  

In this study, a simple model, based on a light-use-efficiency model, was developed in order to estimate growth and yield of the irrigated winter wheat under semi-arid conditions. The originality of the proposed method consists in (1) the modifying of the expression of the conversion coefficient (εconv) by integrating an appropriate stress threshold (ksconv) for triggering irrigation, (2) the substitution of the product of the two maximum coefficients of interception (εimax) and conversion (εconv_max) by a single parameter εmax, (3) the modeling of εmax as a function of the Cumulative Growing Degree Days (CGDD) since sowing date, and (4) the dynamic expression of the harvest index (HI) as a function of the CGDD and the final harvest index (HI0) depending on the maximum value of the Normalized Difference Vegetation Index (NDVI). The calibration and validation of the proposed model were performed based on the observations of wheat dry matter (DM) and grain yield (GY) which were collected on the R3 irrigated district of the Haouz plain (center of Morocco), during three agricultural seasons. Further, the outputs of the simple model were also evaluated against the AquaCrop model estimates. The model calibration allowed the parameterization of εmax in four periods according to the wheat phenological stages. By contrast, a linear evolution was sufficient to represent the relationship between HI and CGDD. For the model validation, the obtained results showed a good agreement between the estimated and observed values with a Root Mean Square Error (RMSE) of about 1.07 and 0.57 t/ha for DM and GY, respectively. These correspond to a relative RMSE of about 19% for DM and 20% for GY. Likewise, although of its simplicity, the accuracy of the proposed model seems to be comparable to that of the AquaCrop model. For GY, R2, and RMSE values were respectively 0.71 and 0.44 t/ha for the developed approach and 0.88 and 0.37 t/ha for AquaCrop. Thus, the proposed simple light-use-efficiency model can be considered as a useful tool to correctly reproduce DM and GY values.


2020 ◽  
Vol 13 (9) ◽  
pp. 4091-4106
Author(s):  
Jinxuan Chen ◽  
Christoph Gerbig ◽  
Julia Marshall ◽  
Kai Uwe Totsche

Abstract. Forecasting atmospheric CO2 concentrations on synoptic timescales (∼ days) can benefit the planning of field campaigns by better predicting the location of important gradients. One aspect of this, accurately predicting the day-to-day variation in biospheric fluxes, poses a major challenge. This study aims to investigate the feasibility of using a diagnostic light-use-efficiency model, the Vegetation Photosynthesis Respiration Model (VPRM), to forecast biospheric CO2 fluxes on the timescale of a few days. As input, the VPRM model requires downward shortwave radiation, 2 m temperature, and enhanced vegetation index (EVI) and land surface water index (LSWI), both of which are calculated from MODIS reflectance measurements. Flux forecasts were performed by extrapolating the model input into the future, i.e., using downward shortwave radiation and temperature from a numerical weather prediction (NWP) model, as well as extrapolating the MODIS indices to calculate future biospheric CO2 fluxes with VPRM. A hindcast for biospheric CO2 fluxes in Europe in 2014 has been done and compared to eddy covariance flux measurements to assess the uncertainty from different aspects of the forecasting system. In total the range-normalized mean absolute error (normalized) of the 5 d flux forecast at daily timescales is 7.1 %, while the error for the model itself is 15.9 %. The largest forecast error source comes from the meteorological data, in which error from shortwave radiation contributes slightly more than the error from air temperature. The error contribution from all error sources is similar at each flux observation site and is not significantly dependent on vegetation type.


Sign in / Sign up

Export Citation Format

Share Document