scholarly journals MAC Protocol in Wireless Body Area Network for Mobile Health: A Survey and an Architecture Design

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Xin Qi ◽  
Kun Wang ◽  
AnPeng Huang ◽  
Haifeng Hu ◽  
Guangjie Han

Wireless body area networks (WBANs) have become a leading solution in mobile health (mHealth). Typically, a WBAN consists of in-body or around-body sensor nodes for collecting data of physiological feature. For a WBAN to provide high throughput and low delay in an energy-efficient way, designing an efficient medium access control (MAC) protocol is of paramount importance because the MAC layer coordinates nodes’ access to the shared wireless medium. To show the difference of MAC protocols between Energy-Harvesting wireless body area networks (EH-WBANs) and battery powered WBANs (BT-WBANs), this paper surveys the latest progresses in energy harvesting techniques and WBAN MAC protocol designs. Furthermore, a novel energy utility architecture is designed to enable sensor node lifetime operation in an EH-WBAN.

2019 ◽  
Vol 15 (7) ◽  
pp. 155014771986155 ◽  
Author(s):  
Nasser-Eddine Rikli ◽  
Areej Al-Mazroa

The IEEE 802.15.6 standard emerged as the most suitable standard that fits the special requirements of wireless body area networks. It provides flexibility to designers by recommending the use of several medium access control layer techniques, but does not specify how to combine some or all these recommended techniques to form the most efficient wireless body area network medium access control for a specific scenario. Our goal here is to design a wireless body area network medium access control that provides an optimal combination of these basic techniques that are available in the standard, by taking into consideration the variability and heterogeneity of the sensors. The performance of the proposed techniques is evaluated using some of the standard performance measures such as throughput, delay, and energy consumption.


Author(s):  
Arun Kumar Rana ◽  
Sharad Sharma

Aims: Health monitoring in Wireless Body Area Networks. Background: A medical wireless body area network activated by IoT is mainly concerned with transmitting the quality details to the doctor within a fair period. The explosion of wearable gadgets and recent developments in miniature sensors illustrate the technological viability of any universal tracking program. IoT incorporates a range of tools fitted with sensing, recognition, communication, etc. Objective: To improve the medical facility. Method: The Wireless Body Area Network (WBAN) Internet of Things (IoT) for healthcare applications is an operational scenario for IoT systems that has attracted interest from large fields of study in the last few years. Internet of Things Based Stable Increased-throughput Multi-hop Protocol for Link Efficiency (IoT-SIMPLE), the IoT ties both topics to the healthcare network effortlessly. IoT enables the sensing, retrieval, and connectivity of all facilities or functional criteria and biomedicine. It puts the surgeons, the patients together And nurses can roam without any restrictions through smart devices, and each entity. Now work is underway to improve the healthcare sector by rising prices and increasing patient care quality. The route determines the route between the nodes and the sink. In this paper, we propose a protocol in WBAN that transmits body sensing data from various sensors, installed on the human body, to sink nodes using a multihop routing technique. Our key goal is to increase WBAN’s total network existence by raising cumulative energy usage. The residual energy parameter governs the usage of energy by the sensor nodes while the distance parameter ensures that the packet is effectively transmitted into the sink Result: Simulation results demonstrate that our proposed protocol very energy efficient and maximizes network stability for longer periods. Conclusion: Throughout this paper, we suggest a method for route data to WBANs. The suggested system uses the expense feature to choose the correct path to fall. The costs of the nodes and their spread from the drain are dependent on residual electricity. Nodes with a lower cost function value are selected as the parent node. Other nodes are parent node children and send their data to parent node. Our simulation tests demonstrate that the suggested routing scheme increases the network reliability period and the packet sent to the sink and in future more numbers of sensors can be used to extend this work to measure throughput, network lifetime, and end-to-end delay.


Modified low-power, ultra-slim, light in weight, intelligent devices are the result of recent advances in technology. Wireless Body Area Network (WBAN) is a replacement technology that can be used to incorporate these devices & thereby provide health monitoring applications in healthcare. Further development of wireless communications in recent years has led to the use of sensing element networks, which are low priced. These networks have a wide variety of applications. Various technical problems in these application areas are being resolved by researchers across the world. These sensing component networks play a significant role in healthcare. These networks have deep roots in various sectors viz; engineering, medicine& science & can show good performance even in harsh climatic conditions. Therefore, this paper provides an associated degree of exposure for the analysis and applications of wireless body area networks (WBAN’s), and body sensor networks (BSN’s). Apart from it, it addresses a wide variety of challenges in these technologies.


2018 ◽  
Vol 7 (2) ◽  
pp. 34-39
Author(s):  
Pallvi . ◽  
Sunil Kumar Gupta ◽  
Rajeev Kumar Bedi

Wireless Body Area Network (WBAN) is an application of wireless sensor network (WSN). WBAN therefore forms a comprehensive collection of devices that are not only capable of providing continuous information about the health status of a person but also offers helpful details about the activities and environment of the person. In this paper, we have evaluated TDMA based MAC protocol performance through several metrics and TDMA approach is used to avoid packet collision which leads to higher packet loss rate. Reinforcement Based Clock synchronization is the solution of problem like packet collision. After clocks of WBAN sensor nodes are synchronized, data can be transferred between sensor nodes and sink efficiently and rapidly. Reinforcement learning iteratively optimizes the clock synchronization technique. Experimental results indicate that the proposed algorithm is more efficient than existing techniques.


Author(s):  
Alok Kumar Shukla ◽  
Prabhat K. Upadhyay ◽  
Abhishek Srivastava ◽  
Jules M. Moualeu

Author(s):  
Lamia Chaari ◽  
Lotfi Kamoun

Wireless Body Area Networks (WBANs) applications have emerged as one of the most recent research areas of wireless sensor networks. Lots of research is improving QoS factors in sensor networks. However, QoS requirements vary from application to application, WBAN applications are very sensitive, and QoS issues in WBAN need major concern and focus. This paper outlines the WBANs QoS requirements and factors and reviews with emphasis on their strengths some medium access mechanisms that response to some QoS challenges. Moreover, the authors have defined and specified a QWBAN MAC protocol that can allow the integration of QoS architecture over WBAN. A set of QoS modules such as admission control (CAC), bandwidth allocation and scheduling are discussed. Besides that, an integrated QoS architecture is suggested for WBAN to support healthcare applications.


2011 ◽  
Vol 2 (4) ◽  
pp. 50-66 ◽  
Author(s):  
Lamia Chaari ◽  
Lotfi Kamoun

Wireless Body Area Networks (WBANs) applications have emerged as one of the most recent research areas of wireless sensor networks. Lots of research is improving QoS factors in sensor networks. However, QoS requirements vary from application to application, WBAN applications are very sensitive, and QoS issues in WBAN need major concern and focus. This paper outlines the WBANs QoS requirements and factors and reviews with emphasis on their strengths some medium access mechanisms that response to some QoS challenges. Moreover, the authors have defined and specified a QWBAN MAC protocol that can allow the integration of QoS architecture over WBAN. A set of QoS modules such as admission control (CAC), bandwidth allocation and scheduling are discussed. Besides that, an integrated QoS architecture is suggested for WBAN to support healthcare applications.


Sign in / Sign up

Export Citation Format

Share Document