link efficiency
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 11)

H-INDEX

7
(FIVE YEARS 1)

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 70
Author(s):  
Mattia Simonazzi ◽  
Alessandro Campanini ◽  
Leonardo Sandrolini ◽  
Claudio Rossi

This paper analyzes two different design procedures for a series-parallel compensated WPT battery charger, based on different definitions of the operating resonant frequency in the condition of maximum link efficiency. The behaviour of the voltage gain magnitude and the input impedance angle of the resulting WPT links is studied for different loads and coupling coefficients. The design algorithms are supported by analytical formulas derived from an exact circuit analysis of the WPT link, avoiding approximations as far as possible. To support the theoretical approach a case study is proposed, in which both design procedures are implemented considering specifications in line with the actual automotive standards. To conclude, a characterization of the efficiency in both cases is derived.


2021 ◽  
Vol 19 (1) ◽  
pp. 016201
Author(s):  
Natalia V Kryzhanovskaya ◽  
Fedor I Zubov ◽  
Eduard I Moiseev ◽  
Anna S Dragunova ◽  
Konstantin A Ivanov ◽  
...  

Abstract Characteristics of a compact III–V optocoupler heterogeneously integrated on a silicon substrate and formed by a 31 µm in diameter microdisk (MD) laser with a closely-spaced 50 µm × 200 µm waveguide photodetector are presented. Both optoelectronic devices were fabricated from the epitaxial heterostroctructures with InGaAs/GaAs quantum well-dot layers. The measured dark current density of the photodetector was as low as 2.1 µA cm−2. The maximum link efficiency determined as the ratio of the photodiode photocurrent increment to the increment of the microlaser bias current was 1%–1.4%. The developed heterogeneous integration of III–V devices to silicon boards by Au-Au thermocompression bonding is useful for avoiding the difficulties associated with III–V epitaxial growth on Si and facilitates integration of several devices with different active layers and waveguides. The application of MD lasers with their lateral light output is promising for simplifying requirements for optical loss at III–V/Si interface.


Author(s):  
Arun Kumar Rana ◽  
Sharad Sharma

Aims: Health monitoring in Wireless Body Area Networks. Background: A medical wireless body area network activated by IoT is mainly concerned with transmitting the quality details to the doctor within a fair period. The explosion of wearable gadgets and recent developments in miniature sensors illustrate the technological viability of any universal tracking program. IoT incorporates a range of tools fitted with sensing, recognition, communication, etc. Objective: To improve the medical facility. Method: The Wireless Body Area Network (WBAN) Internet of Things (IoT) for healthcare applications is an operational scenario for IoT systems that has attracted interest from large fields of study in the last few years. Internet of Things Based Stable Increased-throughput Multi-hop Protocol for Link Efficiency (IoT-SIMPLE), the IoT ties both topics to the healthcare network effortlessly. IoT enables the sensing, retrieval, and connectivity of all facilities or functional criteria and biomedicine. It puts the surgeons, the patients together And nurses can roam without any restrictions through smart devices, and each entity. Now work is underway to improve the healthcare sector by rising prices and increasing patient care quality. The route determines the route between the nodes and the sink. In this paper, we propose a protocol in WBAN that transmits body sensing data from various sensors, installed on the human body, to sink nodes using a multihop routing technique. Our key goal is to increase WBAN’s total network existence by raising cumulative energy usage. The residual energy parameter governs the usage of energy by the sensor nodes while the distance parameter ensures that the packet is effectively transmitted into the sink Result: Simulation results demonstrate that our proposed protocol very energy efficient and maximizes network stability for longer periods. Conclusion: Throughout this paper, we suggest a method for route data to WBANs. The suggested system uses the expense feature to choose the correct path to fall. The costs of the nodes and their spread from the drain are dependent on residual electricity. Nodes with a lower cost function value are selected as the parent node. Other nodes are parent node children and send their data to parent node. Our simulation tests demonstrate that the suggested routing scheme increases the network reliability period and the packet sent to the sink and in future more numbers of sensors can be used to extend this work to measure throughput, network lifetime, and end-to-end delay.


2020 ◽  
Vol 38 (2A) ◽  
pp. 199-210
Author(s):  
Muammer M. Omran ◽  
Ahmed S. Ezzulddin ◽  
Saad Mutashar

The efficiency of a WPT system greatly depends on both the geometry and operating frequency of the transmitting and receiving structures. Genetic optimizations algorithms are presented to prepare the proposed design parameters using MATLAB to optimize the link efficiency. Single and double layer PSCs are optimally designed with minimal proximity losses effect. In this paper, we used the benefit of a double layer technique to miniaturize the receiver PCS size. The proposed single layer (10×10) mm2 and double layer (8×8) mm2 PSCs are validated and simulated using HFSS 15.03 software at a frequency of 13.56MHz in both cases of the air, and human biological skin tissue as intermediate material between the transmitter and receiver PSCs. The calculated and simulated results of both proposed receiver PSCs are compared for both cases of intermediate materials for their efficiency behaviors. The results show that in the case of biological tissue, the deterioration in PTE using 8mm double layer receiver is only 6.5 % (PTE =70.96%), which is less than 13.5 % (PTE=68.6%) using single layer 10mm receiver. A comparative survey has been done for similar works of different authors in the last decade. In comparison with other works, the proposed double layer (8×8) mm2 PSCs is smaller in size and more efficient for use in the IMDs.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 528 ◽  
Author(s):  
Mahmoud Wagih ◽  
Abiodun Komolafe ◽  
Bahareh Zaghari

Achieving a wireless power transfer (WPT) link insensitive to separation is a key challenge to achieving power autonomy through wireless-powering and wireless energy harvesting over a longer range. While coupled WPT has been widely used for near-field high-efficiency WPT applications, the efficiency of the WPT link is highly sensitive to separation and alignment, making it unsuitable for mobile systems with unknown or loose coupling such as wearables. On the other hand, while ultra-high frequency (UHF) and microwave uncoupled radiative WPT (0.3–3 GHz) enables meters-long separation between the transmitter and the receivers, the end-to-end efficiency of the WPT link is adversely limited by the propagation losses. This work proposes radiative WPT, in the 6.78 MHz license-free band, as a hybrid solution to separation-independent WPT, thus mitigating the losses associated with coil separation. Resonant electrically small antennas were fabricated using embroidered textile coils and tuned using L-matching networks, for wearable WPT. The antenna’s efficiency and near-fields have been evaluated numerically and experimentally. The proposed WPT link achieves a stable forward transmission of S 21 > − 17 dB and S 21 > − 28 dB, independent of coil separation on the XZ and XY planes respectively, in a 27 m 3 volume space. The presented approach demonstrates the highest WPT link efficiency at more than 1-m separation and promises higher end-to-end efficiency compared to UHF WPT.


Sign in / Sign up

Export Citation Format

Share Document