Internet of Things Based Stable Increased-throughput Multi-hop Protocol for Link Efficiency (IoT-SIMPLE) for health monitoring in Wireless Body Area Networks

Author(s):  
Arun Kumar Rana ◽  
Sharad Sharma

Aims: Health monitoring in Wireless Body Area Networks. Background: A medical wireless body area network activated by IoT is mainly concerned with transmitting the quality details to the doctor within a fair period. The explosion of wearable gadgets and recent developments in miniature sensors illustrate the technological viability of any universal tracking program. IoT incorporates a range of tools fitted with sensing, recognition, communication, etc. Objective: To improve the medical facility. Method: The Wireless Body Area Network (WBAN) Internet of Things (IoT) for healthcare applications is an operational scenario for IoT systems that has attracted interest from large fields of study in the last few years. Internet of Things Based Stable Increased-throughput Multi-hop Protocol for Link Efficiency (IoT-SIMPLE), the IoT ties both topics to the healthcare network effortlessly. IoT enables the sensing, retrieval, and connectivity of all facilities or functional criteria and biomedicine. It puts the surgeons, the patients together And nurses can roam without any restrictions through smart devices, and each entity. Now work is underway to improve the healthcare sector by rising prices and increasing patient care quality. The route determines the route between the nodes and the sink. In this paper, we propose a protocol in WBAN that transmits body sensing data from various sensors, installed on the human body, to sink nodes using a multihop routing technique. Our key goal is to increase WBAN’s total network existence by raising cumulative energy usage. The residual energy parameter governs the usage of energy by the sensor nodes while the distance parameter ensures that the packet is effectively transmitted into the sink Result: Simulation results demonstrate that our proposed protocol very energy efficient and maximizes network stability for longer periods. Conclusion: Throughout this paper, we suggest a method for route data to WBANs. The suggested system uses the expense feature to choose the correct path to fall. The costs of the nodes and their spread from the drain are dependent on residual electricity. Nodes with a lower cost function value are selected as the parent node. Other nodes are parent node children and send their data to parent node. Our simulation tests demonstrate that the suggested routing scheme increases the network reliability period and the packet sent to the sink and in future more numbers of sensors can be used to extend this work to measure throughput, network lifetime, and end-to-end delay.

2019 ◽  
Vol 15 (7) ◽  
pp. 155014771986155 ◽  
Author(s):  
Nasser-Eddine Rikli ◽  
Areej Al-Mazroa

The IEEE 802.15.6 standard emerged as the most suitable standard that fits the special requirements of wireless body area networks. It provides flexibility to designers by recommending the use of several medium access control layer techniques, but does not specify how to combine some or all these recommended techniques to form the most efficient wireless body area network medium access control for a specific scenario. Our goal here is to design a wireless body area network medium access control that provides an optimal combination of these basic techniques that are available in the standard, by taking into consideration the variability and heterogeneity of the sensors. The performance of the proposed techniques is evaluated using some of the standard performance measures such as throughput, delay, and energy consumption.


2020 ◽  
Vol 16 (8) ◽  
pp. 155014772094914
Author(s):  
Yousaf Zia ◽  
Fasial Bashir ◽  
Kashif Naseer Qureshi

Wireless body area network is a promising technology that brings healthcare to a new level of personalization. The applications of wireless body area network are not limited to healthcare monitoring applications but vastly used in entertainment applications. The applications are emerging at a fast pace and attract the attention of researchers. IEEE 802.15.6 provides a communication standard which specifies the physical layer and media access control layer operations for wireless body area networks. A fixed superframe structure is used for handling of heterogeneous traffics of wireless body area networks through pre-defined user priorities. This leads to inefficient use of superframe time duration because of fixed time phases for different types of data traffic. In this article, a novel group-based classification of traffic is introduced to avoid contention and inefficient use of superframe duration. A group-based media access control is developed to adjust the superframe duration according to high priority traffic whereas the rest of the traffic is controlled using node-based buffering. The experimental results showed that the proposed media access control outperformed adaptive beaconing medium access control and priority media access control, in terms of stability period, delay, throughput, transmission loss, and residual energy.


2016 ◽  
Vol 50 (4) ◽  
pp. 264-276 ◽  
Author(s):  
Anuradha Rangarajan

Abstract Real-time personal health monitoring is gaining new ground with advances in wireless communications. Wireless body area networks (WBANs) provide a means for low-powered sensors, affixed either on the human body or in vivo, to communicate with each other and with external telecommunication networks. The healthcare benefits of WBANs include continuous monitoring of patient vitals, measuring postacute rehabilitation time, and improving quality of medical care provided in medical emergencies. This study sought to examine emerging trends in WBAN adoption in healthcare. To that end, a systematic literature survey was undertaken against the PubMed database. The search criteria focused on peer-reviewed articles that contained the keywords “wireless body area network” and “healthcare” or “wireless body area network” and “health care.” A comprehensive review of these articles was performed to identify adoption dimensions, including underlying technology framework, healthcare subdomain, and applicable lessons-learned. This article benefits healthcare technology professionals by identifying gaps in implementation of current technology and highlighting opportunities for improving products and services.


2020 ◽  
Vol 150 ◽  
pp. 131-143 ◽  
Author(s):  
Fahim Niaz ◽  
Muhammad Khalid ◽  
Zahid Ullah ◽  
Nauman Aslam ◽  
Mohsin Raza ◽  
...  

2019 ◽  
Vol 32 (3) ◽  
pp. 829-837 ◽  
Author(s):  
Weilin Zang ◽  
Fen Miao ◽  
Raffaele Gravina ◽  
Fangmin Sun ◽  
Giancarlo Fortino ◽  
...  

Modified low-power, ultra-slim, light in weight, intelligent devices are the result of recent advances in technology. Wireless Body Area Network (WBAN) is a replacement technology that can be used to incorporate these devices & thereby provide health monitoring applications in healthcare. Further development of wireless communications in recent years has led to the use of sensing element networks, which are low priced. These networks have a wide variety of applications. Various technical problems in these application areas are being resolved by researchers across the world. These sensing component networks play a significant role in healthcare. These networks have deep roots in various sectors viz; engineering, medicine& science & can show good performance even in harsh climatic conditions. Therefore, this paper provides an associated degree of exposure for the analysis and applications of wireless body area networks (WBAN’s), and body sensor networks (BSN’s). Apart from it, it addresses a wide variety of challenges in these technologies.


Sign in / Sign up

Export Citation Format

Share Document