scholarly journals Boundedness of Marcinkiewicz Integrals on RBMO Spaces over Nonhomogeneous Metric Measure Spaces

2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Ji Cheng ◽  
Guanghui Lu

LetX,d,μbe a metric measures space satisfying the upper doubling conditions and the geometrically doubling conditions in the sense of Hytönen. Under the assumption that the dominating function satisfies the weak reverse doubling condition, the authors prove that Marcinkiewicz integral with kernel satisfying certain stronger Hörmander-type condition is bounded on RBMOμspace.

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Guanghui Lu ◽  
Shuangping Tao

Let(X,d,μ)be a metric measure space satisfying the upper doubling condition and geometrically doubling condition in the sense of Hytönen. The aim of this paper is to establish the boundedness of commutatorMbgenerated by the Marcinkiewicz integralMand Lipschitz functionb. The authors prove thatMbis bounded from the Lebesgue spacesLp(μ)to weak Lebesgue spacesLq(μ)for1≤p<n/β, from the Lebesgue spacesLp(μ)to the spacesRBMO(μ)forp=n/β, and from the Lebesgue spacesLp(μ)to the Lipschitz spacesLip(β-n/p)(μ)forn/β<p≤∞. Moreover, some results in Morrey spaces and Hardy spaces are also discussed.


2017 ◽  
Vol 15 (1) ◽  
pp. 1283-1299 ◽  
Author(s):  
Guanghui Lu ◽  
Shuangping Tao

Abstract The main purpose of this paper is to prove that the boundedness of the commutator $\mathcal{M}_{\kappa,b}^{*} $ generated by the Littlewood-Paley operator $\mathcal{M}_{\kappa}^{*} $ and RBMO (μ) function on non-homogeneous metric measure spaces satisfying the upper doubling and the geometrically doubling conditions. Under the assumption that the kernel of $\mathcal{M}_{\kappa}^{*} $ satisfies a certain Hörmander-type condition, the authors prove that $\mathcal{M}_{\kappa,b}^{*} $ is bounded on Lebesgue spaces Lp(μ) for 1 < p < ∞, bounded from the space L log L(μ) to the weak Lebesgue space L1,∞(μ), and is bounded from the atomic Hardy spaces H1(μ) to the weak Lebesgue spaces L1,∞(μ).


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Cao Yonghui ◽  
Zhou Jiang

The authors give a definition of Morrey spaces for nonhomogeneous metric measure spaces and investigate the boundedness of some classical operators including maximal operator, fractional integral operator, and Marcinkiewicz integral operators.


2012 ◽  
Vol 64 (4) ◽  
pp. 892-923 ◽  
Author(s):  
Tuomas Hytönen ◽  
Suile Liu ◽  
Dachun Yang ◽  
Dongyong Yang

Abstract Let (𝒳, d, μ) be a separable metric measure space satisfying the known upper doubling condition, the geometrical doubling condition, and the non-atomic condition that μ(﹛x﹜) = 0 for all x ∈ 𝒳. In this paper, we show that the boundedness of a Calderón–Zygmund operator T on L2(μ) is equivalent to that of T on Lp(μ) for some p ∈ (1,∞), and that of T from L1(μ) to L1,∞(μ). As an application, we prove that if T is a Calderón–Zygmund operator bounded on L2(μ), then its maximal operator is bounded on Lp(μ) for all p ∈ (1,∞) and from the space of all complex-valued Borel measures on 𝒳 to L1,∞(μ). All these results generalize the corresponding results of Nazarov et al. on metric spaces with measures satisfying the so-called polynomial growth condition.


2016 ◽  
Vol 103 (2) ◽  
pp. 268-278 ◽  
Author(s):  
GUANGHUI LU ◽  
SHUANGPING TAO

Let $({\mathcal{X}},d,\unicode[STIX]{x1D707})$ be a nonhomogeneous metric measure space satisfying the so-called upper doubling and the geometric doubling conditions. In this paper, the authors give the natural definition of the generalized Morrey spaces on $({\mathcal{X}},d,\unicode[STIX]{x1D707})$, and then investigate some properties of the maximal operator, the fractional integral operator and its commutator, and the Marcinkiewicz integral operator.


Author(s):  
Vito Buffa ◽  
Michael Collins ◽  
Cintia Pacchiano Camacho

AbstractWe give an existence proof for variational solutions u associated to the total variation flow. Here, the functions being considered are defined on a metric measure space $$({\mathcal {X}}, d, \mu )$$ ( X , d , μ ) satisfying a doubling condition and supporting a Poincaré inequality. For such parabolic minimizers that coincide with a time-independent Cauchy–Dirichlet datum $$u_0$$ u 0 on the parabolic boundary of a space-time-cylinder $$\Omega \times (0, T)$$ Ω × ( 0 , T ) with $$\Omega \subset {\mathcal {X}}$$ Ω ⊂ X an open set and $$T > 0$$ T > 0 , we prove existence in the weak parabolic function space $$L^1_w(0, T; \mathrm {BV}(\Omega ))$$ L w 1 ( 0 , T ; BV ( Ω ) ) . In this paper, we generalize results from a previous work by Bögelein, Duzaar and Marcellini by introducing a more abstract notion for $$\mathrm {BV}$$ BV -valued parabolic function spaces. We argue completely on a variational level.


Author(s):  
Suile Liu ◽  
Yan Meng ◽  
Dachun Yang

Let (X, d, μ) be a metric measure space and let it satisfy the so-called upper doubling condition and the geometrically doubling condition. We show that, for the maximal Calderón–Zygmund operator associated with a singular integral whose kernel satisfies the standard size condition and the Hörmander condition, its Lp(μ)-boundedness with p ∈ (1, ∞) is equivalent to its boundedness from L1(μ) into L1,∞(μ). Moreover, applying this, together with a new Cotlar-type inequality, the authors show that if the Calderón–Zygmund operator T is bounded on L2(μ), then the corresponding maximal Calderón–Zygmund operator is bounded on Lp(μ) for all p ∈ (1, ∞), and bounded from L1(μ) into L1,∞ (μ). These results essentially improve the existing results.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Guanghui Lu ◽  
Shuangping Tao

Let(X,d,μ)be a metric measure space which satisfies the geometrically doubling measure and the upper doubling measure conditions. In this paper, the authors prove that, under the assumption that the kernel ofMκ⁎satisfies a certain Hörmander-type condition,Mκ⁎,ρis bounded from Lebesgue spacesLp(μ)to Lebesgue spacesLp(μ)forp≥2and is bounded fromL1(μ)intoL1,∞(μ). As a corollary,Mκ⁎,ρis bounded onLp(μ)for1<p<2. In addition, the authors also obtain thatMκ⁎,ρis bounded from the atomic Hardy spaceH1(μ)into the Lebesgue spaceL1(μ).


2019 ◽  
Vol 63 (3) ◽  
pp. 643-654
Author(s):  
Haibo Lin ◽  
Zhen Liu ◽  
Chenyan Wang

AbstractLet $({\mathcal{X}},d,\unicode[STIX]{x1D707})$ be a metric measure space satisfying the geometrically doubling condition and the upper doubling condition. In this paper, the authors establish the John-Nirenberg inequality for the regularized BLO space $\widetilde{\operatorname{RBLO}}(\unicode[STIX]{x1D707})$.


Sign in / Sign up

Export Citation Format

Share Document