scholarly journals Visible Light Catalytic Degradation of Aniline Wastewater over Multishaped BiOBr Microcrystals

2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Jun Zhang ◽  
Huabo Li ◽  
Hairui Yao ◽  
Hao Zhang

The photooxidation process of aniline-containing simulated wastewater under visible light irradiation over BiOBr microcrystal grains with different shapes was studied. The distinctive surface microstructures of the BiOBr microcrystals, like clustered flower petals and quadrate lamellas, were produced by using imidazole ionic liquid and inorganic bromide as Br sources and by solvothermal and hydrothermal route, respectively. The ionic liquid not only can impact the products’ morphology, but also can largely improve the photocatalytic activity of the BiOBr microcrystals due to the soft templating effect. The top degradation ratio of the aniline wastewater photocatalyzed by lamellar BiOBr crystals is 23.71%, but the equivalent value photocatalyzed by flower petal-like BiOBr crystals is almost twice as much; that is, it reaches 46.51%. The photodegradation effect and mechanism over differently shaped BiOBr microcrystals have been compared.

2011 ◽  
Vol 1292 ◽  
Author(s):  
Dengrong Cai ◽  
Jianmin Li ◽  
Shundong Bu ◽  
Shengwen Yu ◽  
Dengren Jin ◽  
...  

ABSTRACTA facile hydrothermal route assisted by polyethylene glycol (PEG) 400 was utilized to synthesize single-phase Bi2Fe4O9 crystallites. X-ray diffraction results showed the products with PEG 400 of 30 g/L exhibited a preferred growth along the (001) plane. Transmission electron microscopy indicated that the morphology of the as-prepared Bi2Fe4O9 crystallites with PEG 400 were plake-like and rod-like. Strong absorption in visible-light region of the products was characterized by UV-vis diffuse reflectance spectrum (UV-DRS). The photocatalytic activity of Bi2Fe4O9 crystallites was evaluated on degradation of methyl orange (MO) under visible light irradiation. For 3 h irradiation, the degradation ratio was increased to 93% with the aid of a small amount of H2O2. The analysis of FT-IR spectra proved that the Bi2Fe4O9 catalysts were remained stable after the photocalytic reactions.


RSC Advances ◽  
2015 ◽  
Vol 5 (53) ◽  
pp. 42910-42921 ◽  
Author(s):  
Owais Mehraj ◽  
Bilal M. Pirzada ◽  
Niyaz A. Mir ◽  
Saima Sultana ◽  
Suhail Sabir

To harvest solar energy more efficiently, novel Ag2S/Bi2WO6 heterojunctions were synthesized by a hydrothermal route.


RSC Advances ◽  
2018 ◽  
Vol 8 (15) ◽  
pp. 7956-7962 ◽  
Author(s):  
Zhidong Wei ◽  
Ruishuo Li ◽  
Rui Wang

In this study, hierarchical BiOBr microspheres were synthesized via a one-pot solvothermal method in the presence of imidazole ionic liquids.


2018 ◽  
Vol 47 (42) ◽  
pp. 15232-15245 ◽  
Author(s):  
Beata Bajorowicz ◽  
Ewa Kowalska ◽  
Joanna Nadolna ◽  
Zhishun Wei ◽  
Maya Endo ◽  
...  

A combination of the hydrothermal route with a linker assisted attachment method was used to obtain efficient CdS/Bi2S3 quantum dot-decorated perovskite type KNbO3.


RSC Advances ◽  
2017 ◽  
Vol 7 (20) ◽  
pp. 12255-12264 ◽  
Author(s):  
Chunxiang Lin ◽  
Moshuqi Zhu ◽  
Teng Zhang ◽  
Yifan Liu ◽  
Yuancai Lv ◽  
...  

IL type influences the morphology of SnS2 prepared by MAIL methods. Cellulose support enhances the performance of as-synthesized CE/SnS2 composite.


2011 ◽  
Vol 239-242 ◽  
pp. 1923-1928
Author(s):  
Qian Lin Chen ◽  
Yuan Wang ◽  
Chun Yan Zhong ◽  
Yu Guo

La3+/halogen (F-, Cl-and Br-) co-doped TiO2was synthesized by alkoxide hydrolysis method. The prepared La3+/halogen TiO2photocatalysts with anatase phases and rutile phases were characterized with XRD, EDS, TEM and surface area analytic technology. Methyl orange was used as model pollutants to evaluate its visible light photocatalytic activity. The results showed that the co-doping of La3+and halogen ions improved the surface area of TiO2. Compared with 450°C and 650°C, La3+/Cl-and La3+/Br-co-doped TiO2calcined at 550°C exhibited much higher photocatalytic activity. The optimal doping ratio of La3+/F-, La3+/Cl-and La3+/Br-was 0.4, 0.6, and 0.5 ((wt%)/(wt%)), respectively. Moreover, the degradation ratio of methyl orange on La3+/halogen co-doped TiO2with the optimal ratio were all higher than the maximum degradation ratio on La3+, F-, Cl-and Br-doped TiO2prepared by the same method.


2012 ◽  
Vol 87 (12) ◽  
pp. 1626-1633 ◽  
Author(s):  
Hui Xu ◽  
Yanhua Song ◽  
Ling Liu ◽  
Huaming Li ◽  
Yuanguo Xu ◽  
...  

RSC Advances ◽  
2013 ◽  
Vol 3 (42) ◽  
pp. 19624 ◽  
Author(s):  
Jun Di ◽  
Jiexiang Xia ◽  
Sheng Yin ◽  
Hui Xu ◽  
Minqiang He ◽  
...  

Micromachines ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 66 ◽  
Author(s):  
Xinxin Zhao ◽  
Hua Yang ◽  
Ziming Cui ◽  
Xiangxian Wang ◽  
Zao Yi

Bi4Ti3O12 square plates were synthesized via a hydrothermal route, and their growth process was systematically investigated. Carbon quantum dots (CQDs) were prepared using glucose as the carbon source, which were then assembled on the surface of Bi4Ti3O12 square plates via a hydrothermal route with the aim of enhancing the photocatalytic performance. XRD (X-ray powder diffraction), SEM (scanning electron microscopy), TEM (transmission electron microscopy), UV-vis DRS (diffuse reflectance spectroscopy), XPS (X-ray photoelectron spectroscopy), FTIR (Fourier transform infrared spectroscopy), PL (photoluminescence) spectroscopy, EIS (electrochemical impedance spectroscopy) and photocurrent spectroscopy were used to systematically characterize the as-prepared samples. It is demonstrated that the decoration of CQDs on Bi4Ti3O12 plates leads to an increased visible light absorption, slightly increased bandgap, increased photocurrent density, decreased charge-transfer resistance, and decreased PL intensity. Simulated sunlight and visible light were separately used as a light source to evaluate the photocatalytic activity of the samples toward the degradation of RhB in aqueous solution. Under both simulated sunlight and visible light irradiation, CQDs@Bi4Ti3O12 composites with an appropriate amount of CQDs exhibit obviously enhanced photocatalytic performance. However, the decoration of excessive CQDs gives rise to a decrease in the photocatalytic activity. The enhanced photocatalytic activity of CQDs-modified Bi4Ti3O12 can be attributed to the following reasons: (1) The electron transfer between Bi4Ti3O12 and CQDs promotes an efficient separation of photogenerated electron/hole pairs in Bi4Ti3O12; (2) the up-conversion photoluminescence emitted from CQDs could induce the generation of additional electron/hole pairs in Bi4Ti3O12; and (3) the photoexcited electrons in CQDs could participate in the photocatalytic reactions.


Sign in / Sign up

Export Citation Format

Share Document