scholarly journals Second Order Sliding Mode Control Scheme for an Autonomous Underwater Vehicle with Dynamic Region Concept

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Zool H. Ismail ◽  
Vina W. E. Putranti

The main goal in developing closed loop control system for an Autonomous Underwater Vehicle (AUV) is to make a robust vehicle from natural and exogenous perturbations such as wind, wave, and ocean currents. However a well-known robust control, for instance, Sliding Mode Controller (SMC), gives a chattering effect and it influences the stability of an AUV. Furthermore, some researchers combined other controls to get better result but it tends to present long computational time and causes large energy consumption. Thus, this paper proposed a Super Twisting Sliding Mode Controller (STSMC) with dynamic region concept for an AUV. STSMC or a second order SMC is adopted as a robust controller which is free from chattering effect. Meanwhile, the implementation of dynamic region is useful to reduce the energy usage. As a result, the proposed controller obtains global asymptotic stability which is validated by using Lyapunov-like function. Moreover, some simulations present the efficiency of proposed controller. In conclusion, STSMC with region based control is effective to be applied for the robust tracking of an AUV. It contributes to give a fast response when handling the perturbations, short computational time, and low energy demand.

2018 ◽  
Vol 51 (13) ◽  
pp. 161-166 ◽  
Author(s):  
J. Guerrero ◽  
E. Antonio ◽  
A. Manzanilla ◽  
J. Torres ◽  
R. Lozano

2015 ◽  
Vol 72 (2) ◽  
Author(s):  
Mohd Bazli Mohd Mokhar ◽  
Zool Hilmi Ismail

This paper presents fuzzy sliding mode control with region tracking control for a single autonomous underwater vehicle. The vehicle is needed to track a certain moving region whilst under the influence of wave current. The fuzzy logic is used to tune the gain and to reduce the effect of chattering effect, the signum function is replaced by saturation function. Simulation result is presented to demonstrate the performance of the proposed tracking control of the AUV.            


Author(s):  
Nira Mawangi Sarif ◽  
Rafidah Ngadengon ◽  
Herdawatie Abdul Kadir ◽  
Mohd Hafiz A. Jalil ◽  
Khalid Abidi

Autonomous underwater vehicle (AUV) are underwater robotic devices intended to explore hostiles territories in underwater domain. AUVs research gaining popularity among underwater research community because of its extensive applications and challenges to overcome unpredictable ocean behavior. The aim of this paper is to design discrete time terminal sliding mode control (DTSMC) reaching law-based employed to NPS AUV II purposely to improve the dynamic response of the closed loop system. This is accomplished by introducing a nonlinear component to sliding surface design in which the system state accelerated, and chattering effect is suppressed. The nonlinear component consist of fractional power is to ensure steeper slope of the sliding surface in the vicinity of the equilibrium point which lead to quicker convergence speed. Thus, the chattering effect in the control action suppressed as the convergence of the system state accelerated. The stability of the control system is proven by using Sarpturk analysis and the performance of the DTSMC is demonstrated through simulation study. The performance of DTSMC is benchmarked with DSMC and PID controller


10.14311/730 ◽  
2005 ◽  
Vol 45 (4) ◽  
Author(s):  
A. J. Mitchell ◽  
E. W. McGookin ◽  
D. J. Murray-Smith

This paper looks at the implementation of a Sliding Mode Observer (SMO) based Reconfiguration algorithm to deal with sensor faults within the context of navigation controllers for Autonomous Underwater Vehicle (AUV). In this paper the reconfigurability aspects are considered for the heading controller. Simulation responses are used to illustrate that the Sliding Mode Observer is able to give state information to the controller when there is a fault in the AUV’s sensor package. Comparisons are made between the Sliding Mode Controller with and without reconfigurability for a number of different sensor failures, e.g. bias errors in or the complete loss of the heading data, and the robustness of the Sliding Mode Observer is investigated through the introduction of disturbances into the system. 


2019 ◽  
Vol 6 (5B) ◽  
pp. 96-102 ◽  
Author(s):  
Nira Mawangi Sarif ◽  
Rafidah Ngadengon ◽  
Herdawatie Abdul Kadir ◽  
Mohd Hafiz A.Jalil

Sign in / Sign up

Export Citation Format

Share Document