silar method
Recently Published Documents


TOTAL DOCUMENTS

343
(FIVE YEARS 111)

H-INDEX

34
(FIVE YEARS 8)

2022 ◽  
Vol 123 ◽  
pp. 111921
Author(s):  
Harun Güney ◽  
Demet İskenderoğlu ◽  
Muhammed Emin Güldüren ◽  
Sibel Morkoç Karadeniz

Author(s):  
chaewon Seong ◽  
Pratik Mane ◽  
Hyojung Bae ◽  
seungwon Lee ◽  
Soon Hyung Kang ◽  
...  

Abstract In this study, BiVO4 photoanodes were synthesized using a simple and inexpensive modified successive ionic layer adsorption and reaction (SILAR) method. In particular, the effect of the number of SILAR cycles on the photoelectrochemical (PEC) properties of BiVO4 was evaluated. Scanning electron microscopy analysis revealed the porous surface morphology of the BiVO4 thin layers with irregularly shaped particles formed on the surface of fluorine-doped tin oxide substrates. The crystal structure of BiVO4 was confirmed using X-ray diffraction analysis. The ultraviolet–visible spectrophotometry results indicated that the bandgap energy of the deposited film was approximately 2.4 eV. In addition, the PEC properties of the BiVO4 photoanodes using potentiostat were analyzed. The linear sweep voltammetry curves revealed that the photocurrent density of the BiVO4 samples increased with the increasing number of m-SILAR cycles, and a maximum photocurrent density of approximately 0.83 mA/cm2 was achieved for the BVO-35. These results suggest that an efficient photoelectrode for compact PEC cells can serve as a basis for development.


2021 ◽  
Vol 21 (12) ◽  
pp. 6111-6119
Author(s):  
Van Manh Nguyen ◽  
Trinh Tung Ngo ◽  
Thi Thu Trang Bui ◽  
Thi Thanh Hop Tran ◽  
The Huu Nguyen ◽  
...  

In this work, we have synthesized a nanocomposite ZnS/CdS/Pt/TiO2 nanotube arrays (denoted ZCP-NTAs). Firstly, TiO2 nanotube array (NTAs) material was fabricated by the anodic method of a titanium plate in an electrolyte solution containing 0.35 M NaHSO4 and 0.24 M NaF and incubated in the air at 500 ºC for 2 hours. After that, pulsed electrodeposition technology was used to decorate platinum nanoparticles (denoted as Pt NPs) onto the surface of TiO2 nanotubes to form P-NTAs photoelectrodes. Then, the SILAR method is used to deposition CdS quantum dots (symbolized as CdS QDs) on the surface of P-NTAs to form CP-NTAs material. Finally, by the SILAR method, a ZnS passive layer that protects against optical corrosion and inhibits recombination of e−/h+ pairs was coated onto the CP-NTAs to form ZCP-NTAs material. As-prepared ZCP-NTAs photocatalytic material has good absorbability of light in the visible region with light absorption wavelength up to 608 nm, photon conversion efficiency up to 5.32% under light intensity AM1.5G, and decomposition efficiency of 10 mg L−1 methyl orange (MO) in 120 minutes reached 91.50%. This material promises to bring high application ability in the photocatalytic field applied for environmental treatment and other applications.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4047
Author(s):  
Ambreen Ashar ◽  
Ijaz Ahmad Bhatti ◽  
Asim Jilani ◽  
Muhammad Mohsin ◽  
Sadia Rasul ◽  
...  

Among chemical water pollutants, Cr(VI) is a highly toxic heavy metal; solar photocatalysis is a cost-effective method to reduce Cr(VI) to innocuous Cr(III). In this research work, an efficient and economically feasible ZnO/CuO nanocomposite was grafted onto the polyester fabric ZnO/CuO/PF through the SILAR method. Characterization by SEM, EDX, XRD, and DRS confirmed the successful grafting of highly crystalline, solar active nanoflakes of ZnO/CuO nanocomposite onto the polyester fabric. The grafting of the ZnO/CuO nanocomposite was confirmed by FTIR analysis of the ZnO/CuO/PF membrane. A solar photocatalytic reduction reaction of Cr(VI) was carried out by ZnO/CuO/PF under natural sunlight (solar flux 5–6 kW h/m2). The response surface methodology was employed to determine the interactive effect of three reaction variables: initial concentration of Cr(VI), pH, and solar irradiation time. According to UV/Vis spectrophotometry, 97% of chromium was removed from wastewater in acidic conditions after four hours of sunlight irradiation. ZnO/CuO/PF demonstrated reusability for 11 batches of wastewater under natural sunlight. Evaluation of Cr(VI) reduction was also executed by complexation of Cr(VI) and Cr(III) with 1, 5-diphenylcarbazide. The total percentage removal of Cr after solar photocatalysis was carried out by AAS of the wastewater sample. The ZnO/CuO/PF enhanced the reduction of Cr(VI) metal from wastewater remarkably.


2021 ◽  
Vol 14 (5) ◽  
pp. 419-424

Abstract: The most prominent and utilizable platinum-coated copper Oxide nanostructured thin films are prepared using the SILAR method. Their structural properties have been studied using X-ray diffraction (XRD) and Raman spectroscopy. XRD pattern reveals the phase purity and crystallinity of CuO nanostructures. The average grain size estimated from XRD gives diameters in the range of 14 - 27 nm. Raman spectra explain the structural information of CuO and Pt/CuO nanostructured thin films, in which the peaks observed at 328 cm-1, 609.32 cm-1 and 1141.77 cm-1 are the different phonon modes of CuO. The peak at 2136 cm-1 provides strong evidence for the formation of platinum on CuO nanostructures. The SEM micrograph confirms the floral morphology, which is composed of nano petals. From the observed morphology, it is observed that the deposited thin films such as CuO and Pt/CuO will give interesting applications to our society by being self-cleaning agents, photocatalysts, semiconductor devices, optical fibers, … etc. Keywords: CuO, Pt/CuO, Structural analysis, SILAR, Crystallinity.


2021 ◽  
Vol 21 (11) ◽  
pp. 5642-5647
Author(s):  
Zhijun Zou ◽  
Zhongli Qu ◽  
Longtao Tang ◽  
Yang Qiu ◽  
Gaohua Liao ◽  
...  

In this work, UV light activated multi-cycle photoelectric properties of TiO2 and CdS/TiO2 films in formaldehyde were researched. TiO2 film was prepared by screen printing, CdS/TiO2 compounded film was synthesized by SILAR method. XRD and FE-SEM was used to characterize the TiO2 and CdS/TiO2 samples. Multi-cycle photoelectric properties of TiO2 and CdS/TiO2 with uv light on and off were evaluated by testing the photocurrent. On one hand, under the same bias voltage, CdS/TiO 2showed a higher photocurrent than that by TiO2. The reason for this result should be ascribed to the compounded structure in CdS/TiO2, with which the separation and transfer of photogenerated electron-hole pairs could be improved. On the other hand, with the testing cycle number increased, the photocurrent amplitudes of TiO2 and CdS/TiO2 increased. These results suggested that the time to reach a stable photocurrent value for TiO2 and CdS/TiO2 is much longer than one cycle time (300 S). To illustrate the increased photocurrent amplitude value cycle by cycle, the photocurrent of CdS/TiO2 to a much longer time (more than 4000 seconds) was also tested. To explain these results, corresponding possible illustrations were presented.


Sign in / Sign up

Export Citation Format

Share Document