scholarly journals Superior Photocurrent of Quantum Dot Sensitized Solar Cells Based on PbS : In/CdS Quantum Dots

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Zongbo Huang ◽  
Xiaoping Zou

PbS : In and CdS quantum dots (QDs) are sequentially assembled onto a nanocrystalline TiO2film to prepare a PbS : In/CdS cosensitized photoelectrode for QD sensitized solar cells (QDSCs). The results show that PbS : In/CdS QDs have exhibited a significant effect in the light harvest and performance of the QDSC. In the cascade structure of the electrode, the reorganization of energy levels between PbS and TiO2forms a stepwise structure of band-edge levels which is advantageous to the electron injection into TiO2. Energy conversion efficiency of 2.3% is achieved with the doped electrode, under the illumination of one sun (AM1.5, 100 mW cm2). Besides, a remarkable short circuit current density (up to 23 mA·cm−2) is achieved in the resulting PbS : In/CdS quantum dot sensitized solar cell, and the related mechanism is discussed.

2015 ◽  
Vol 2015 ◽  
pp. 1-4
Author(s):  
Xiaojun Zhu ◽  
Xiaoping Zou ◽  
Hongquan Zhou

We use the successive ionic layer adsorption and reaction (SILAR) method for the preparation of quantum dot sensitized solar cells, to improve the performance of solar cells by doping quantum dots. We tested the UV-Vis absorption spectrum of undoped CdS QDSCs and Cu doped CdS QDSCs with different doping ratios. The doping ratios of copper were 1 : 100, 1 : 500, and 1 : 1000, respectively. The experimental results show that, under the same SILAR cycle number, Cu doped CdS quantum dot sensitized solar cells have higher open circuit voltage, short circuit current density photoelectric conversion efficiency than undoped CdS quantum dots sensitized solar cells. Refinement of Cu doping ratio are 1 : 10, 1 : 100, 1 : 200, 1 : 500, and 1 : 1000. When the proportion of Cu and CdS is 1 : 10, all the parameters of the QDSCs reach the minimum value, and, with the decrease of the proportion, the short circuit current density, open circuit voltage, and the photoelectric conversion efficiency are all increased. When proportion is 1 : 500, all parameters reach the maximum values. While with further reduction of the doping ratio of Cu, the parameters of QDSCs have a decline tendency. The results showed that, in a certain range, the lower the doping ratio of Cu, the better the performance of quantum dot sensitized solar cell.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Xiaoping Zou ◽  
Zhe Sun

Cadmium sulfide (CdS) quantum dots (QDs) are assembled onto the TiO2films by chemical bath deposition method (CBD). And the QDs size is controlled by the times of CBD cycles. They are characterized by UV-visible absorption. To avoid the photo corrosion and electrolyte corrosion, CdS and N719 are sequentially assembled onto the nanocrystalline TiO2films to prepare a CdS/N719 cosensitized photo electrode for the dye-sensitized solar cells. In the structure of TiO2/CdS/N719 electrode, the reorganization of energy levels between CdS and N719 forms a stepwise structure of band-edge levels which is advantageous to the electron injection and hole recovery of CdS and N719 QDs. The open circuit voltage (Voc), short circuit current density (Jsc), and efficiency are increased.


2020 ◽  
Vol 13 (06) ◽  
pp. 2050028
Author(s):  
Tianyu Guo ◽  
Hui Zhang ◽  
Guifeng Chen ◽  
Boling Long ◽  
Luxiao Xie ◽  
...  

I–III–VI chalcopyrite copper indium selenium is one of therepresentatives of the light absorbing layer material, and is often used for a thin-film solar cell. With the development of nano-technology, CuInSe2 quantum dots (CISe QDs) which have intermediate belt and excitation effect characteristics are applied to the solar cells as an alternative of Cd- or S-based QDs. Most conventional methods for the synthesis of CISe QDs using solution involve the dangerous and environmentally unfriendly Oleylamine or phosphine coordination compounds. In this work, CISe QDs were synthesized by a green, safe and low-temperature method in triethylene glycol. Through controlling the growth temperature and time, the diameter can be adjusted from 3[Formula: see text]nm to 10[Formula: see text]nm. The samples exhibit quantum confinement effect, and have a controllable optical band gap. QDs were deposited on the surface of ZnO nanorods to obtain a photoanode, which were fabricated into quantum dot-sensitized solar cells. The device exhibits size-dependent performance. And the open circuit voltage shows a fluctuation up to 0.26[Formula: see text]V. When the size is 4[Formula: see text]nm, the short circuit current density is the largest (15[Formula: see text]mA/cm2).


Solar Energy ◽  
2019 ◽  
Vol 188 ◽  
pp. 825-830 ◽  
Author(s):  
Mahmoud Samadpour ◽  
Hieng Kiat Jun ◽  
Parisa Parand ◽  
M.N. Najafi

2020 ◽  
Vol 44 (2) ◽  
pp. 505-512 ◽  
Author(s):  
Xiaoli Mao ◽  
Jianguo Yu ◽  
Jun Xu ◽  
Juntian Zhou ◽  
Cheng Luo ◽  
...  

The synchronous deposition of PbS and CdS affords band-structure tailoring and surface recombination passivation for efficient and stable solid-state QDSCs.


2004 ◽  
Vol 11 (06) ◽  
pp. 569-575 ◽  
Author(s):  
M. RUSOP ◽  
T. SOGA ◽  
T. JIMBO ◽  
M. UMENO

The phosphorus doped n -type ( n - C : P ) carbon films and fabrication of n - C : P / p - Si heterojunction solid-state solar cells by pulsed laser deposition (PLD) technique at room temperature using graphite target have been studied. The P atoms incorporated in the films were determined by X-ray photoelectron spectroscopy (XPS) to be in the range of 0.22–1.77 atomic percentages. The cells performances have been given in the dark I–V rectifying curve and I–V working curve under illumination when exposed to AM 1.5 illumination condition (100 mW/cm2, 25°C). The open circuit voltage ( V oc ) and short circuit current density ( J sc ) for the cells are observed to vary from 215 to 265 mV and from 7.5 to 10.5 mA/cm2, respectively. The cell fabricated using the target with the amount of P by 7 weight percentages (Pwt%) shows the highest energy conversion efficiency, η=1.14% and fill factor, FF =41%. In this paper, the dependence of P content on the electrical and optical properties of the deposited n - C : P films and the photovoltaic characteristic of the n - C : P / p - Si cells are reported.


2015 ◽  
Vol 25 (2) ◽  
pp. 139
Author(s):  
Tran Thi Thao ◽  
Vu Thi Hai ◽  
Nguyen Nang Dinh ◽  
Le Dinh Trong

By using spin-coating technique, a low bandgap conjugated polymer, poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopen-ta[2,1-b;3,4-b′]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT)  and its composite thin films have been prepared. The optical absorption and photoconductive properties with over a wide spectral range, from 350 to 950  nm, were characterized. The obtained results showed that PCPDTBT:10 wt% CdSe  composite is the most suitable for efficient light-harvesting in polymer-based photovoltaic cells. The photoelectrical conversion efficiency (PCE) of the device with  a multilayer structure of ITO/PEDOT/ PCPDTBT:CdSe /LiF/Al  reached a value as large as 1.34% with an open-circuit voltage (Voc) = 0.57 V, a short-circuit current density (Jsc) = 4.29 mA/cm2, and a fill factor (FF) = 0.27. This suggests a useful application in further fabrication of quantum dots/polymers based solar cells.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 132 ◽  
Author(s):  
Libo Yu ◽  
Zhen Li

ZnxCd1-xSe@ZnO hollow spheres (HS) were successfully fabricated for application in quantum dot sensitized solar cells (QDSSCs) based on ZnO HS through the ion-exchange process. The sizes of the ZnxCd1-xSe@ZnO HS could be tuned from ~300 nm to ~800 nm using ZnO HS pre-synthesized by different sizes of carbonaceous spheres as templates. The photovoltaic performance of QDSSCs, especially the short-circuit current density (Jsc), experienced an obvious change when different sizes of ZnxCd1-xSe@ZnO HS are employed. The ZnxCd1-xSe@ZnO HS with an average size distribution of ~500 nm presented a better performance than the QDSSCs based on other sizes of ZnxCd1-xSe@ZnO HS. When using the mixture of ZnxCd1-xSe@ZnO HS with different sizes, the power conversion efficiency can be further improved. The size effect of the hollow spheres, light scattering, and composition gradient structure ZnxCd1-xSe@ZnO HS are responsible for the enhancement of the photovoltaic performance.


Sign in / Sign up

Export Citation Format

Share Document