scholarly journals Evolutionary Game Analysis of Competitive Information Dissemination on Social Networks: An Agent-Based Computational Approach

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Qing Sun ◽  
Zhong Yao

Social networks are formed by individuals, in which personalities, utility functions, and interaction rules are made as close to reality as possible. Taking the competitive product-related information as a case, we proposed a game-theoretic model for competitive information dissemination in social networks. The model is presented to explain how human factors impact competitive information dissemination which is described as the dynamic of a coordination game and players’ payoff is defined by a utility function. Then we design a computational system that integrates the agent, the evolutionary game, and the social network. The approach can help to visualize the evolution of % of competitive information adoption and diffusion, grasp the dynamic evolution features in information adoption game over time, and explore microlevel interactions among users in different network structure under various scenarios. We discuss several scenarios to analyze the influence of several factors on the dissemination of competitive information, ranging from personality of individuals to structure of networks.

Author(s):  
Katia Sycara ◽  
Paul Scerri ◽  
Anton Chechetka

In this chapter, we explore the use of evolutionary game theory (EGT) (Weibull, 1995; Taylor & Jonker, 1978; Nowak & May, 1993) to model the dynamics of adaptive opponent strategies for large population of players. In particular, we explore effects of information propagation through social networks in Evolutionary Games. The key underlying phenomenon that the information diffusion aims to capture is that reasoning about the experiences of acquaintances can dramatically impact the dynamics of a society. We present experimental results from agent-based simulations that show the impact of diffusion through social networks on the player strategies of an evolutionary game and the sensitivity of the dynamics to features of the social network.


2019 ◽  
Vol 30 (11) ◽  
pp. 1950094 ◽  
Author(s):  
Jianye Yu ◽  
Junjie Lv ◽  
Yuanzhuo Wang ◽  
Jingyuan Li

Information dissemination groups, especially those disseminating the same kind of information such as advertising, product promotion, etc., compete with each other when their information spread on social networks. Most of the existing methods analyze the dissemination mechanism mainly upon the information itself without considering human characteristics, e.g. relation networks, cooperation/defection, etc. In this paper, we introduce a framework of social evolutionary game (SEG) to investigate the influence of human behaviors in competitive information dissemination. Coordination game is applied to represent human behaviors in the competition of asynchronous information diffusion. We perform a series of simulations through a specific game model to analyze the mechanism and factors of information diffusion, and show that when the benefits of competitive information is around 1.2 times of the original one, it can compensate the loss of reputation caused by the change of strategy. Furthermore, through experiments on a dataset of two films on Sina Weibo, we described the mechanism of competition evolution over real data of social network, and validated the effectiveness of our model.


2020 ◽  
Author(s):  
Sarah Gelper ◽  
Ralf van der Lans ◽  
Gerrit van Bruggen

Many firms try to leverage consumers’ interactions on social platforms as part of their communication strategies. However, information on online social networks only propagates if it receives consumers’ attention. This paper proposes a seeding strategy to maximize information propagation while accounting for competition for attention. The theory of exchange networks serves as the framework for identifying the optimal seeding strategy and recommends seeding people that have many friends, who, in turn, have only a few friends. There is little competition for the attention of those seeds’ friends, and these friends are therefore responsive to the messages they receive. Using a game-theoretic model, we show that it is optimal to seed people with the highest Bonacich centrality. Importantly, in contrast to previous seeding literature that assumed a fixed and nonnegative connectivity parameter of the Bonacich measure, we demonstrate that this connectivity parameter is negative and needs to be estimated. Two independent empirical validations using a total of 34 social media campaigns on two different large online social networks show that the proposed seeding strategy can substantially increase a campaign’s reach. The second study uses the activity network of messages exchanged to confirm that the effects are driven by competition for attention. This paper was accepted by Anandhi Bharadwaj, information systems.


Author(s):  
Katia Sycara ◽  
Paul Scerri ◽  
Anton Chechetka

The chapter explores the use of evolutionary game theory (EGT) to model the dynamics of adaptive opponent strategies for a large population of players. In particular, it explores effects of information propagation through social networks in evolutionary games. The key underlying phenomenon that the information diffusion aims to capture is that reasoning about the experiences of acquaintances can dramatically impact the dynamics of a society. The chapter presents experimental results from agent-based simulations that show the impact of diffusion through social networks on the player strategies of an evolutionary game and the sensitivity of the dynamics to features of the social network.


Author(s):  
Katia Sycara ◽  
Paul Scerri ◽  
Anton Chechetka

In this chapter, we explore the use of evolutionary game theory (EGT) (Nowak & May, 1993; Taylor & Jonker, 1978; Weibull, 1995) to model the dynamics of adaptive opponent strategies for a large population of players. In particular, we explore effects of information propagation through social networks in evolutionary games. The key underlying phenomenon that the information diffusion aims to capture is that reasoning about the experiences of acquaintances can dramatically impact the dynamics of a society. We present experimental results from agent-based simulations that show the impact of diffusion through social networks on the player strategies of an evolutionary game and the sensitivity of the dynamics to features of the social network.


Sign in / Sign up

Export Citation Format

Share Document