scholarly journals Low Threshold, Wide Dynamic Range, Tunable, All-Optical Self-Modulator Based on Fano Resonance and Out-of-Plane Coupling in a Slab Photonic Crystal with a Graphene Layer

2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Reza Asadi ◽  
Zhengbiao Ouyang

We demonstrate an all-optical modulator based on self-modulation in a one-dimensional slab photonic crystal (PhC) by using optical Kerr nonlinearity of graphene and Fano resonance effect. It has been shown that the effect of Fano resonance in a one-dimensional slab PhC for intensity enhancement can provide low threshold (~1 MW/cm2), high frequency (>1 THz), and wide dynamic range (>3 THz) tunability for the all-optical self-modulator. Such a self-modulator can find applications in optical pulse generations, optical clocks, frequency shifting, and so forth.

Silicon ◽  
2021 ◽  
Author(s):  
Mohammad Moradi ◽  
Masoud Mohammadi ◽  
Saeed Olyaee ◽  
Mahmood Seifouri

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Luis Torrijos-Morán ◽  
Amadeu Griol ◽  
Jaime García-Rupérez

AbstractStrongly influenced by the advances in the semiconductor industry, the miniaturization and integration of optical circuits into smaller devices has stimulated considerable research efforts in recent decades. Among other structures, integrated interferometers play a prominent role in the development of photonic devices for on-chip applications ranging from optical communication networks to point-of-care analysis instruments. However, it has been a long-standing challenge to design extremely short interferometer schemes, as long interaction lengths are typically required for a complete modulation transition. Several approaches, including novel materials or sophisticated configurations, have been proposed to overcome some of these size limitations but at the expense of increasing fabrication complexity and cost. Here, we demonstrate for the first time slow light bimodal interferometric behaviour in an integrated single-channel one-dimensional photonic crystal. The proposed structure supports two electromagnetic modes of the same polarization that exhibit a large group velocity difference. Specifically, an over 20-fold reduction in the higher-order-mode group velocity is experimentally shown on a straightforward all-dielectric bimodal structure, leading to a remarkable optical path reduction compared to other conventional interferometers. Moreover, we experimentally demonstrate the significant performance improvement provided by the proposed bimodal photonic crystal interferometer in the creation of an ultra-compact optical modulator and a highly sensitive photonic sensor.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Sana Rebhi ◽  
Radhouene Massoudi ◽  
Monia Najjar

AbstractIn this paper, an ultra-fast all-optical modulator, based on a new shape of nonlinear photonic crystal ring resonator, is designed and studied. Numerical methods such as plane wave expansion (PWE) and finite-difference time domain (FDTD) are used to perform simulations. The modulation technique consists of carrier light controlling by means of input light signal and Kerr effect. The investigation of extinction ratio and insertion loss within the carrier input power shows that the choice of 0.7 W is the optimal value of that power to ensure the tradeoff between both characteristics. The suggested modulator demonstrates an excellent extinction ratio about 20.8018, a very low insertion loss of −13.98 and a short switching time about 13.4 ps. According to the obtained results, the modulator can be considered as an ultra-fast and ultra-compact optical component.


2013 ◽  
Vol 21 (10) ◽  
pp. 11877 ◽  
Author(s):  
Kengo Nozaki ◽  
Akihiko Shinya ◽  
Shinji Matsuo ◽  
Tomonari Sato ◽  
Eiichi Kuramochi ◽  
...  

2020 ◽  
Vol 95 (11) ◽  
pp. 115503
Author(s):  
Asmaa M Mohamed ◽  
Walied Sabra ◽  
Arafa H Aly ◽  
M Mobarak ◽  
A S Shalaby

Author(s):  
Chun-Ju Yang ◽  
yi zou ◽  
Swapnajit Chakravarty ◽  
Hai Yan ◽  
Zheng Wang ◽  
...  

2001 ◽  
Vol 16 (26) ◽  
pp. 1667-1670
Author(s):  
◽  
YUQIAN MA

L3 + C is a branch experiment on L3 magnet spectrometer, which is located on the ring of LEP accelerator at CERN. To take the advantage of L3 muon chambers in its low threshold, wide dynamic range and high resolution, the momentum of cosmic ray muons in the range of 15–2000 GeV/c at a shallow depth of 30 m of molasse can be measured precisely. Since 1998, a scintillator detector system, a new fast trigger and DAQ system, and a small air shower array had been established for study the CR muon events independently. Up to August 2000, 8 billion muons and 25 million air shower events had been recorded. The first results for CR muon spectrum and the charge ratio etc. had been obtained.


Sign in / Sign up

Export Citation Format

Share Document