scholarly journals A Novel Hepatocellular Carcinoma Image Classification Method Based on Voting Ranking Random Forests

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Bingbing Xia ◽  
Huiyan Jiang ◽  
Huiling Liu ◽  
Dehui Yi

This paper proposed a novel voting ranking random forests (VRRF) method for solving hepatocellular carcinoma (HCC) image classification problem. Firstly, in preprocessing stage, this paper used bilateral filtering for hematoxylin-eosin (HE) pathological images. Next, this paper segmented the bilateral filtering processed image and got three different kinds of images, which include single binary cell image, single minimum exterior rectangle cell image, and single cell image with a size ofn⁎n. After that, this paper defined atypia features which include auxiliary circularity, amendment circularity, and cell symmetry. Besides, this paper extracted some shape features, fractal dimension features, and several gray features like Local Binary Patterns (LBP) feature, Gray Level Cooccurrence Matrix (GLCM) feature, and Tamura features. Finally, this paper proposed a HCC image classification model based on random forests and further optimized the model by voting ranking method. The experiment results showed that the proposed features combined with VRRF method have a good performance in HCC image classification problem.

Author(s):  
Zakariya A. Oraibi ◽  
Hayder Yousif ◽  
Adel Hafiane ◽  
Guna Seetharaman ◽  
Kannappan Palaniappan

2020 ◽  
Author(s):  
Xiaoyu He ◽  
Juan Su ◽  
Guangyu Wang ◽  
Kang Zhang ◽  
Navarini Alexander ◽  
...  

BACKGROUND Pemphigus vulgaris (PV) and bullous pemphigoid (BP) are two rare but severe inflammatory dermatoses. Due to the regional lack of trained dermatologists, many patients with these two diseases are misdiagnosed and therefore incorrectly treated. An artificial intelligence diagnosis framework would be highly adaptable for the early diagnosis of these two diseases. OBJECTIVE Design and evaluate an artificial intelligence diagnosis framework for PV and BP. METHODS The work was conducted on a dermatological dataset consisting of 17,735 clinical images and 346 patient metadata of bullous dermatoses. A two-stage diagnosis framework was designed, where the first stage trained a clinical image classification model to classify bullous dermatoses from five common skin diseases and normal skin and the second stage developed a multimodal classification model of clinical images and patient metadata to further differentiate PV and BP. RESULTS The clinical image classification model and the multimodal classification model achieved an area under the receiver operating characteristic curve (AUROC) of 0.998 and 0.942, respectively. On the independent test set of 20 PV and 20 BP cases, our multimodal classification model (sensitivity: 0.85, specificity: 0.95) performed better than the average of 27 junior dermatologists (sensitivity: 0.68, specificity: 0.78) and comparable to the average of 69 senior dermatologists (sensitivity: 0.80, specificity: 0.87). CONCLUSIONS Our diagnosis framework based on clinical images and patient metadata achieved expert-level identification of PV and BP, and is potential to be an effective tool for dermatologists in remote areas in the early diagnosis of these two diseases.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 624
Author(s):  
Stefan Rohrmanstorfer ◽  
Mikhail Komarov ◽  
Felix Mödritscher

With the always increasing amount of image data, it has become a necessity to automatically look for and process information in these images. As fashion is captured in images, the fashion sector provides the perfect foundation to be supported by the integration of a service or application that is built on an image classification model. In this article, the state of the art for image classification is analyzed and discussed. Based on the elaborated knowledge, four different approaches will be implemented to successfully extract features out of fashion data. For this purpose, a human-worn fashion dataset with 2567 images was created, but it was significantly enlarged by the performed image operations. The results show that convolutional neural networks are the undisputed standard for classifying images, and that TensorFlow is the best library to build them. Moreover, through the introduction of dropout layers, data augmentation and transfer learning, model overfitting was successfully prevented, and it was possible to incrementally improve the validation accuracy of the created dataset from an initial 69% to a final validation accuracy of 84%. More distinct apparel like trousers, shoes and hats were better classified than other upper body clothes.


Author(s):  
Ritam Guha ◽  
Manosij Ghosh ◽  
Pawan Kumar Singh ◽  
Ram Sarkar ◽  
Mita Nasipuri

AbstractIn any multi-script environment, handwritten script classification is an unavoidable pre-requisite before the document images are fed to their respective Optical Character Recognition (OCR) engines. Over the years, this complex pattern classification problem has been solved by researchers proposing various feature vectors mostly having large dimensions, thereby increasing the computation complexity of the whole classification model. Feature Selection (FS) can serve as an intermediate step to reduce the size of the feature vectors by restricting them only to the essential and relevant features. In the present work, we have addressed this issue by introducing a new FS algorithm, called Hybrid Swarm and Gravitation-based FS (HSGFS). This algorithm has been applied over three feature vectors introduced in the literature recently—Distance-Hough Transform (DHT), Histogram of Oriented Gradients (HOG), and Modified log-Gabor (MLG) filter Transform. Three state-of-the-art classifiers, namely, Multi-Layer Perceptron (MLP), K-Nearest Neighbour (KNN), and Support Vector Machine (SVM), are used to evaluate the optimal subset of features generated by the proposed FS model. Handwritten datasets at block, text line, and word level, consisting of officially recognized 12 Indic scripts, are prepared for experimentation. An average improvement in the range of 2–5% is achieved in the classification accuracy by utilizing only about 75–80% of the original feature vectors on all three datasets. The proposed method also shows better performance when compared to some popularly used FS models. The codes used for implementing HSGFS can be found in the following Github link: https://github.com/Ritam-Guha/HSGFS.


Sign in / Sign up

Export Citation Format

Share Document