scholarly journals The Role of Parvalbumin, Sarcoplasmatic Reticulum Calcium Pump Rate, Rates of Cross-Bridge Dynamics, and Ryanodine Receptor Calcium Current on Peripheral Muscle Fatigue: A Simulation Study

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Oliver Röhrle ◽  
Verena Neumann ◽  
Thomas Heidlauf

A biophysical model of the excitation-contraction pathway, which has previously been validated for slow-twitch and fast-twitch skeletal muscles, is employed to investigate key biophysical processes leading to peripheral muscle fatigue. Special emphasis hereby is on investigating how the model’s original parameter sets can be interpolated such that realistic behaviour with respect to contraction time and fatigue progression can be obtained for a continuous distribution of the model’s parameters across the muscle units, as found for the functional properties of muscles. The parameters are divided into 5 groups describing (i) the sarcoplasmatic reticulum calcium pump rate, (ii) the cross-bridge dynamics rates, (iii) the ryanodine receptor calcium current, (iv) the rates of binding of magnesium and calcium ions to parvalbumin and corresponding dissociations, and (v) the remaining processes. The simulations reveal that the first two parameter groups are sensitive to contraction time but not fatigue, the third parameter group affects both considered properties, and the fourth parameter group is only sensitive to fatigue progression. Hence, within the scope of the underlying model, further experimental studies should investigate parvalbumin dynamics and the ryanodine receptor calcium current to enhance the understanding of peripheral muscle fatigue.

Medicina ◽  
2020 ◽  
Vol 56 (5) ◽  
pp. 249
Author(s):  
Hans Degens ◽  
David A. Jones

Background and Objectives: Muscle fatigue is characterised by (1) loss of force, (2) decreased maximal shortening velocity and (3) a greater resistance to stretch that could be due to reduced intracellular Ca2+ and increased Pi, which alter cross bridge kinetics. Materials and Methods: To investigate this, we used (1) 2,3-butanedione monoxime (BDM), believed to increase the proportion of attached but non-force-generating cross bridges; (2) Pi that increases the proportion of attached cross bridges, but with Pi still attached; and (3) reduced activating Ca2+. We used permeabilised rat soleus fibres, activated with pCa 4.5 at 15 °C. Results: The addition of 1 mM BDM or 15 mM Pi, or the lowering of the Ca2+ to pCa 5.5, all reduced the isometric force by around 50%. Stiffness decreased in proportion to isometric force when the fibres were activated at pCa 5.5, but was well maintained in the presence of Pi and BDM. Force enhancement after a stretch increased with the length of stretch and Pi, suggesting a role for titin. Maximum shortening velocity was reduced by about 50% in the presence of BDM and pCa 5.5, but was slightly increased by Pi. Neither decreasing Ca2+ nor increasing Pi alone mimicked the effects of fatigue on muscle contractile characteristics entirely. Only BDM elicited a decrease of force and slowing with maintained stiffness, similar to the situation in fatigued muscle. Conclusions: This suggests that in fatigue, there is an accumulation of attached but low-force cross bridges that cannot be the result of the combined action of reduced Ca2+ or increased Pi alone, but is probably due to a combination of factors that change during fatigue.


2010 ◽  
Vol 22 (4) ◽  
pp. 547-556 ◽  
Author(s):  
Albertas Skurvydas ◽  
Marius Brazaitis

The aim of the study was to evaluate the effect of plyometric training (PT) on central and peripheral (muscle) fatigue in prepubertal girls and boys. The boys (n = 13, age 10.3 ± 0.3 years) and girls (n = 13, age, 10.2 ± 0.3 years) performed continuous 2-min maximal voluntary contractions (MVCs) before and after 16 high-intensity PT sessions. PT comprised two training sessions per week of 30 jumps in each session with 20 s between jumps. The greatest effect of PT was on excitation–contraction coupling, (twitch force increased by 323% in boys and 21% in girls) and height of a counter–movement jump (increased by 37% in boys and 38% in girls). In contrast, the quadriceps voluntary activation index, central activation ratio, and MVC did not change significantly after PT. The thickness of the quadriceps muscle increased by 9% in boys and 14% in girls after PT. In conclusion, boys and girls demonstrated similar changes in indicators of central fatigue (50–60% decrease) and peripheral fatigue (45–55% decrease) after MVC before and after PT.


2015 ◽  
Vol 49 (2) ◽  
pp. 173-182 ◽  
Author(s):  
Hetty Prinsen ◽  
Johannes P. van Dijk ◽  
Machiel J. Zwarts ◽  
Jan Willem H. Leer ◽  
Gijs Bleijenberg ◽  
...  

2014 ◽  
Vol 27 (3) ◽  
pp. 407-412
Author(s):  
Alex de Andrade Fernandes ◽  
Ciro José Brito ◽  
Breno Cesar Vieira ◽  
João Carlos Bouzas Marins

Introduction Muscle fatigue is a phenomenon associated with physical work. It is common in endurance sports, physical fitness tests and daily activities. Some tests can be directly affected by the effect of peripheral muscle fatigue, including the handgrip strength (HGS) test, which is considered baseline measure for assessing the functionality of the hand. Objectives a) verify the effect of peripheral muscle fatigue (between trials) during the testing of HGS, with a 60-second recovery interval; b) to analyze whether there is a difference in considering the mean value obtained in three trials or the best result as the final result. Materials and methods The final sample comprised 1,279 men. We followed the standard methodology and used a hydraulic hand dynamometer. Results There were statistically significant differences (P < 0.05) in the dominant hand among all the trials: first (46.5 ± 8.6 Kgf), second (46.4 ± 8.5 Kgf) and third (46.1 ± 8.6 Kgf); and also in the non-dominant hand: first (44.9 ± 8.4 Kgf), second (44.5 ± 8.3 Kgf) and third (44.0 ± 8.3 Kgf). We also found statistically significant differences (P < 0.05) between the two ways of considering the final result. For the dominant hand, the mean of the three attempts was 46.3 ± 8.3 Kgf and the best result was 48.1 ± 8.5 Kgf, whereas for the non-dominant hand, these results were 44.5 ± 8.2 Kgf and 46.0 ± 8.2 kgf, respectively. Conclusion Peripheral muscle fatigue directly interferes in the final result. A significant reduction in strength levels occurs in course of the assessment. The best result is frequently obtained at the first trial, which indicates that the highest value obtained should be considered as the final result.


2009 ◽  
Vol 587 (1) ◽  
pp. 271-283 ◽  
Author(s):  
Markus Amann ◽  
Lester T. Proctor ◽  
Joshua J. Sebranek ◽  
David F. Pegelow ◽  
Jerome A. Dempsey

Author(s):  
Manuel García-Sillero ◽  
Javier Benítez-Porres ◽  
Jerónimo García-Romero ◽  
Diego A. Bonilla ◽  
Jorge L. Petro ◽  
...  

The aim of this study was to compare the effects of various recovery techniques on muscle tissue after eccentric exercise-induced muscle fatigue (EIMF). Forty subjects (24.3 ± 2.6 years; 77.45 ± 8.3 kg; 177.0 ± 6.4 cm; 24.66 ± 1.6 kg∙m−2) were randomly assigned to one of the following groups: manual therapy (n =10, MT), mechanical vibration (n = 10, MV), percussion therapy (n = 10, PT) or foam roller (n = 10, FR). The contraction time (Tc) and the radial displacement (Dm) of the gastrocnemius was evaluated through tensiomyography (TMG). The application of the different techniques had positive effects for Tc and Dm in the treated leg compared to the untreated leg (F = 50.01, p < 0.01, η2p = 0.58 and F = 27.58, p < 0.01, η2p = 0.43, respectively) and for the interaction of the factors (Time x Leg x Therapy: F = 5.76, p < 0.01, η2p = 0.32 and F = 5.93, p < 0.01, η2p = 0.33, respectively). The results of the various methods used were similar: Tc (F = 0.17, p = 0.917; η2p = 0.01) and Dm (F = 3.30, p = 0.031, η2p = 0.22). PT interventions show potential for restoring muscle compliance and reducing stiffness, similar to MT and possibly more effective (cost-time relationship) compared to MV or FR.


Sign in / Sign up

Export Citation Format

Share Document