sarcoplasmatic reticulum
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 0)

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
J Mustroph ◽  
S Pabel ◽  
T Stehle ◽  
S Lebek ◽  
S Neef ◽  
...  

Abstract Rationale In atrial and ventricular rhythm disorders, an increased diastolic sarcoplasmatic reticulum (SR) calcium leak can induce a depolarizing transient inward current, serving as a trigger for cellular arrhythmias. Dantrolene has been shown to also stabilize the cardiac ryanodine receptor. However, the detailed mechanism of the mode of action remains unknown. This study aims to investigate the effects of dantrolene on calcium/calmodulin-dependent kinase II (CaMKII) mediated arrhythmogenesis. Methods and results Right atrial cardiomyocytes (CM) were isolated from patients with atrial fibrillation. To investigate SR Ca2+ leak, measurements of diastolic SR Ca2+ sparks were performed by confocal microscopy using Fluo-4 AM. Dantrolene (10 μmol/l) potently reduced Ca2+-spark-frequency (CaSpF) by 90±26% (p<0.05, n=21 cells dantrolene vs. 19 cells control) leading to a reduction of the calculated diastolic SR-Ca2+-leak by 91±31% (p<0.05, n=21 vs. 19). Interestingly, CaMKII-inhibition using Autocamtide-2-Related Inhibitory Peptide (AIP) did not further reduced SR Ca2+ leak compared to dantrolene alone in human cardiomyocytes. This observation may suggest (secondary) inhibitory effects of dantrolene on CaMKII. To elucidate the role of CaMKII in dantrolene-mediated antiarrhythmic effects, we investigated atrial CM from mice overexpressing CaMKII (TG) and respective wildtype controls (WT). CaSpF and SR Ca2+ leak were reduced by dantrolene in both TG and WT mice (p<0.005, TG: dantrolene vs. vehicle n=132 vs 127 cells (9 mice); WT: dantrolene vs. vehicle n=61 vs 61 cells (5 mice)). However, proarrhythmogenic Ca2+ waves were only significantly reduced by dantrolene in TG mice (p<0.05, TG: dantrolene vs. vehicle 10.8% vs. 26.2%, n=154 vs 164 cells). Correspondingly, the incidence of delayed afterdepolarizations (DADs) in TG cells was significantly diminished by dantrolene (p<0.05, TG: dantrolene vs. vehicle 1/14 vs. 9/15 cells, n=5 mice). In contrast, DADs were not reduced by dantrolene in WT cells without increased CaMKII activity (p=n.s., WT: dantrolene vs vehicle 3/16 vs 2/13 cells, n=5 mice). In preliminary in vivo experiments, intraperitoneal injection of 40 mg/kg body weight dantrolene reduced the inducibility of arrhythmias by ventricular burst stimulation in CaMKII TG mice compared to vehicle (dantrolene 0/2 mice vs. vehicle 2/2 mice, p<0.05 Chi-Square). Conclusion Dantrolene beneficially altered Ca2+ homeostasis in human AF CM and murine CM. Dantrolene seems to exert its antiarrhythmic potential in a CaMKII-dependent manner. Thus, dantrolene as an already clinically approved compound might be a potential antiarrhythmic drug that merits clinical investigation. Acknowledgement/Funding Deutsche Forschungsgemeinschaft (MA 1981/5-1 and 7-1 to LSM). Marga und Walter Boll-Stiftung (SS).


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Oliver Röhrle ◽  
Verena Neumann ◽  
Thomas Heidlauf

A biophysical model of the excitation-contraction pathway, which has previously been validated for slow-twitch and fast-twitch skeletal muscles, is employed to investigate key biophysical processes leading to peripheral muscle fatigue. Special emphasis hereby is on investigating how the model’s original parameter sets can be interpolated such that realistic behaviour with respect to contraction time and fatigue progression can be obtained for a continuous distribution of the model’s parameters across the muscle units, as found for the functional properties of muscles. The parameters are divided into 5 groups describing (i) the sarcoplasmatic reticulum calcium pump rate, (ii) the cross-bridge dynamics rates, (iii) the ryanodine receptor calcium current, (iv) the rates of binding of magnesium and calcium ions to parvalbumin and corresponding dissociations, and (v) the remaining processes. The simulations reveal that the first two parameter groups are sensitive to contraction time but not fatigue, the third parameter group affects both considered properties, and the fourth parameter group is only sensitive to fatigue progression. Hence, within the scope of the underlying model, further experimental studies should investigate parvalbumin dynamics and the ryanodine receptor calcium current to enhance the understanding of peripheral muscle fatigue.


2015 ◽  
Vol 31 (8) ◽  
pp. 1380-1388 ◽  
Author(s):  
Sascha Treskatsch ◽  
Mohammed Shaqura ◽  
Lukas Dehe ◽  
Torsten K. Roepke ◽  
Mehdi Shakibaei ◽  
...  

2014 ◽  
Vol 3 (7) ◽  
pp. 742-753 ◽  
Author(s):  
Thomas E. Jensen ◽  
Lykke Sylow ◽  
Adam J. Rose ◽  
Agnete B. Madsen ◽  
Yeliz Angin ◽  
...  

2008 ◽  
Vol 590 (1-3) ◽  
pp. 20-28 ◽  
Author(s):  
Sandra Claro ◽  
Maria Etsuko Miyamoto Oshiro ◽  
Edna Freymuller ◽  
Eduardo Katchburian ◽  
Esper George Kallas ◽  
...  

2008 ◽  
Vol 205 (7) ◽  
pp. 1583-1591 ◽  
Author(s):  
David Varga-Szabo ◽  
Attila Braun ◽  
Christoph Kleinschnitz ◽  
Markus Bender ◽  
Irina Pleines ◽  
...  

Platelet activation and aggregation are essential to limit posttraumatic blood loss at sites of vascular injury but also contributes to arterial thrombosis, leading to myocardial infarction and stroke. Agonist-induced elevation of [Ca2+]i is a central step in platelet activation, but the underlying mechanisms are not fully understood. A major pathway for Ca2+ entry in nonexcitable cells involves receptor-mediated release of intracellular Ca2+ stores, followed by activation of store-operated calcium (SOC) channels in the plasma membrane. Stromal interaction molecule 1 (STIM1) has been identified as the Ca2+ sensor in the endoplasmic reticulum (ER) that activates Ca2+ release–activated channels in T cells, but its role in mammalian physiology is unknown. Platelets express high levels of STIM1, but its exact function has been elusive, because these cells lack a normal ER and Ca2+ is stored in a tubular system referred to as the sarcoplasmatic reticulum. We report that mice lacking STIM1 display early postnatal lethality and growth retardation. STIM1-deficient platelets have a marked defect in agonist-induced Ca2+ responses, and impaired activation and thrombus formation under flow in vitro. Importantly, mice with STIM1-deficient platelets are significantly protected from arterial thrombosis and ischemic brain infarction but have only a mild bleeding time prolongation. These results establish STIM1 as an important mediator in the pathogenesis of ischemic cardio- and cerebrovascular events.


2005 ◽  
Vol 83 (8-9) ◽  
pp. 805-810 ◽  
Author(s):  
Maria Grazia Zizzo ◽  
Flavia Mulè ◽  
Rosa Serio

We investigated the mechanisms involved in the nitric oxide (NO)-induced inhibitory effects on longitudinal smooth muscle of mouse ileum, using organ bath technique. Exogenously applied NO, delivered as sodium nitroprusside (SNP; 0.1–100 µmol/L) induced a concentration-dependent reduction of the ileal spontaneous contractions. 1H-[1,2,4]oxadiazolol[4,3,a]quinoxalin-1-one (ODQ; 1 µmol/L), a guanilyl cyclase inhibitor, reduced the SNP-induced effects. Tetraethylammonium chloride (20 mmol/L), a non-selective K+ channel blocker, and charybdotoxin (0.1 µmol/L), blocker of large conductance Ca2+-dependent K+ channels, significantly reduced SNP-induced inhibitory effects. In contrast, apamin (0.1 µmol/L), blocker of small conductance Ca2+-dependent K+ channels, was not able to affect the response to SNP. Ciclopiazonic acid (10 µmol/L) or thapsigargin (0.1 µmol/L), sarcoplasmatic reticulum Ca2+-ATPase inhibitors, decreased the SNP-inhibitory effects. Ryanodine (10 µmol/L), inhibitor of Ca2+ release from ryanodine-sensitive intracellular stores, significantly reduced the SNP inhibitory effects. The membrane permeable analogue of cGMP, 8-bromoguanosine 3′,5′-cyclic monophosphate (100 µmol/L), also reduced spontaneous mechanical activity, and its effect was antagonized by ryanodine. The present study suggests that NO causes inhibitory effects on longitudinal smooth muscle of mouse ileum through cGMP which in turn would activate the large conductance Ca2+-dependent K+ channels, via localized ryanodine-sensitive Ca2+ release.Key words: nitric oxide, mouse ileum, potassium channels, calcium stores.


2004 ◽  
Vol 86 (2) ◽  
pp. 815-824 ◽  
Author(s):  
Christine Peinelt ◽  
Hans-Jürgen Apell

Sign in / Sign up

Export Citation Format

Share Document