Cross-bridge Mechanisms of Muscle Fatigue: Role of H+ and Inorganic Phosphate

2008 ◽  
Vol 40 (Supplement) ◽  
pp. 57
Author(s):  
Robert Fitts
1986 ◽  
Vol 61 (1) ◽  
pp. 180-184 ◽  
Author(s):  
S. A. Esau ◽  
N. Sperelakis

With muscle fatigue the chloride (Cl-) conductance of the sarcolemmal membrane decreases. The role of lowered Cl- conductance in the prolongation of relaxation seen with fatigue was studied in isolated hamster diaphragm strips. The muscles were studied in either a Krebs solution or a low Cl- solution in which half of the NaCl was replaced by Na-gluconate. Short tetanic contractions were produced by a 160-ms train of 0.2-ms pulses at 60 Hz from which tension (T) and the time constant of relaxation were measured. Resting membrane potential (Em) was measured using KCl-filled microelectrodes with resistances of 15–20 M omega. Mild fatigue (20% fall in tension) was induced by 24–25 tetanic contractions at the rate of 2/s. There was no difference in Em or T in the two solutions, either initially or with fatigue. The time constant of relaxation was greater in low Cl- solution, both initially (22 +/- 3 vs. 18 +/- 5 ms, mean +/- SD, P less than 0.05) and with fatigue (51 +/- 18 vs. 26 +/- 7 ms, P less than 0.005). Lowering of sarcolemmal membrane Cl- conductance appears to play a role in the slowing of relaxation of hamster diaphragm muscle seen with fatigue.


1997 ◽  
Vol 272 (3) ◽  
pp. H1333-H1341 ◽  
Author(s):  
M. X. He ◽  
S. Wang ◽  
H. F. Downey

To test the role of inorganic phosphate (Pi) in downregulation of myocardial contractile force at the onset of ischemia, Pi of rat hearts was determined with 31P nuclear magnetic resonance spectroscopy. Forty cycles of brief hypoperfusion (30% of baseline flow for 33 s) were used to achieve a time resolution of 0.512 s for comparing dynamic changes in Pi and contractile force. Initial control values of left ventricular developed pressure (LVP), heart rate, and oxygen consumption were 136 +/- 11 mmHg, 236 +/- 4 beats/min, and 95 +/- 3 microl O2 x min(-1) x g(-1); these values were unchanged at the end of the experiment. During the first 10 s of hypoperfusion, Pi increased at a rate (percentage of the total observed change) faster than the decrease in LVP; Pi and LVP then changed at the same rate during the remainder of the hypoperfusion. ADP did not change in advance of LVP. Intracellular pH did not change. The results indicate that Pi plays an important role in initiating the downregulation of myocardial contractile force at the onset of ischemia. Perfusion pressure also declined faster than LVP at the onset of ischemia, indicating potential importance of vascular collapse in contractile downregulation during early ischemia.


Plant Science ◽  
2006 ◽  
Vol 170 (3) ◽  
pp. 659-664 ◽  
Author(s):  
Mauro Guida dos Santos ◽  
Rafael Vasconcelos Ribeiro ◽  
Ricardo Ferraz de Oliveira ◽  
Eduardo Caruso Machado ◽  
Carlos Pimentel

2021 ◽  
Vol 153 (3) ◽  
Author(s):  
Masataka Kawai ◽  
Robert Stehle ◽  
Gabriele Pfitzer ◽  
Bogdan Iorga

In this study, we aimed to study the role of inorganic phosphate (Pi) in the production of oscillatory work and cross-bridge (CB) kinetics of striated muscle. We applied small-amplitude sinusoidal length oscillations to rabbit psoas single myofibrils and muscle fibers, and the resulting force responses were analyzed during maximal Ca2+ activation (pCa 4.65) at 15°C. Three exponential processes, A, B, and C, were identified from the tension transients, which were studied as functions of Pi concentration ([Pi]). In myofibrils, we found that process C, corresponding to phase 2 of step analysis during isometric contraction, is almost a perfect single exponential function compared with skinned fibers, which exhibit distributed rate constants, as described previously. The [Pi] dependence of the apparent rate constants 2πb and 2πc, and that of isometric tension, was studied to characterize the force generation and Pi release steps in the CB cycle, as well as the inhibitory effect of Pi. In contrast to skinned fibers, Pi does not accumulate in the core of myofibrils, allowing sinusoidal analysis to be performed nearly at [Pi] = 0. Process B disappeared as [Pi] approached 0 mM in myofibrils, indicating the significance of the role of Pi rebinding to CBs in the production of oscillatory work (process B). Our results also suggest that Pi competitively inhibits ATP binding to CBs, with an inhibitory dissociation constant of ∼2.6 mM. Finally, we found that the sinusoidal waveform of tension is mostly distorted by second harmonics and that this distortion is closely correlated with production of oscillatory work, indicating that the mechanism of generating force is intrinsically nonlinear. A nonlinear force generation mechanism suggests that the length-dependent intrinsic rate constant is asymmetric upon stretch and release and that there may be a ratchet mechanism involved in the CB cycle.


Development ◽  
1986 ◽  
Vol 97 (1) ◽  
pp. 87-94
Author(s):  
Roberto Narbaitz ◽  
Jaffar Soleimani Rad

Ultimobranchial bodies (UBBs) were dissected from 17-day-old chick embryos and grafted onto the chorioallantoic membrane of 8-day-old embryos. The embryos with UBB grafts as well as sham-grafted controls were injected on the 10th day of incubation with 100 ng 1,25(OH)2D3 dissolved in ethyl alcohol or with an equal volume of ethyl alcohol alone; embryos were sacrificed on the 13th day. Grafted UBBs showed ultrastructural characteristics typical of actively secreting glands. A histological study of the tibiae from all embryos showed that while the grafted embryos responded to the injection of 1,25(OH)2D3 with a peripheral rim of undermineralized bone trabeculae, sham-grafted embryos never did so. These results confirm the original hypothesis that the presence of differentiated UBBs is a precondition for the production of undermineralized bone (osteoid) by 1,25(OH)2D3. In a second series of experiments, similarly treated embryos were sacrificed on the 10th, 11th, 12th and 13th day; the levels of calcium and inorganic phosphate were determined in their blood. The injection of 1,25(OH)2D3 produced in all embryos hypercalcaemia and hypophosphataemia. However, the hypophosphataemic response was more prolonged in the embryos with UBB grafts than in sham-grafted ones. These results suggest that the grafted UBBs prolonged the hypophosphataemic response, probably by secreting calcitonin and thus reducing the rate of bone resorption. It is also probable that the prolonged hypophosphataemia produced or contributed to the undermineralization of the peripheral (subperiosteal) trabeculae.


Medicina ◽  
2020 ◽  
Vol 56 (5) ◽  
pp. 249
Author(s):  
Hans Degens ◽  
David A. Jones

Background and Objectives: Muscle fatigue is characterised by (1) loss of force, (2) decreased maximal shortening velocity and (3) a greater resistance to stretch that could be due to reduced intracellular Ca2+ and increased Pi, which alter cross bridge kinetics. Materials and Methods: To investigate this, we used (1) 2,3-butanedione monoxime (BDM), believed to increase the proportion of attached but non-force-generating cross bridges; (2) Pi that increases the proportion of attached cross bridges, but with Pi still attached; and (3) reduced activating Ca2+. We used permeabilised rat soleus fibres, activated with pCa 4.5 at 15 °C. Results: The addition of 1 mM BDM or 15 mM Pi, or the lowering of the Ca2+ to pCa 5.5, all reduced the isometric force by around 50%. Stiffness decreased in proportion to isometric force when the fibres were activated at pCa 5.5, but was well maintained in the presence of Pi and BDM. Force enhancement after a stretch increased with the length of stretch and Pi, suggesting a role for titin. Maximum shortening velocity was reduced by about 50% in the presence of BDM and pCa 5.5, but was slightly increased by Pi. Neither decreasing Ca2+ nor increasing Pi alone mimicked the effects of fatigue on muscle contractile characteristics entirely. Only BDM elicited a decrease of force and slowing with maintained stiffness, similar to the situation in fatigued muscle. Conclusions: This suggests that in fatigue, there is an accumulation of attached but low-force cross bridges that cannot be the result of the combined action of reduced Ca2+ or increased Pi alone, but is probably due to a combination of factors that change during fatigue.


Sign in / Sign up

Export Citation Format

Share Document