scholarly journals Crystal Structure of the N-Terminal RNA Recognition Motif of mRNA Decay Regulator AUF1

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Young Jun Choi ◽  
Je-Hyun Yoon ◽  
Jeong Ho Chang

AU-rich element binding/degradation factor 1 (AUF1) plays a role in destabilizing mRNAs by forming complexes with AU-rich elements (ARE) in the 3′-untranslated regions. Multiple AUF1-ARE complexes regulate the translation of encoded products related to the cell cycle, apoptosis, and inflammation. AUF1 contains two tandem RNA recognition motifs (RRM) and a Gln- (Q-) rich domain in their C-terminal region. To observe how the two RRMs are involved in recognizing ARE, we obtained the AUF1-p37 protein covering the two RRMs. However, only N-terminal RRM (RRM1) was crystallized and its structure was determined at 1.7 Å resolution. It appears that the RRM1 and RRM2 separated before crystallization. To demonstrate which factors affect the separate RRM1-2, we performed limited proteolysis using trypsin. The results indicated that the intact proteins were cleaved by unknown proteases that were associated with them prior to crystallization. In comparison with each of the monomers, the conformations of theβ2-β3 loops were highly variable. Furthermore, a comparison with the RRM1-2 structures of HuR and hnRNP A1 revealed that a dimer of RRM1 could be one of the possible conformations of RRM1-2. Our data may provide a guidance for further structural investigations of AUF1 tandem RRM repeat and its mode of ARE binding.

1993 ◽  
Vol 123 (5) ◽  
pp. 1081-1091 ◽  
Author(s):  
C Yan ◽  
T Mélèse

NSR1, a 67-kD nucleolar protein, was originally identified in our laboratory as a nuclear localization signal binding protein, and has subsequently been found to be involved in ribosome biogenesis. NSR1 has three regions: an acidic/serine-rich NH2 terminus, two RNA recognition motifs, and a glycine/arginine-rich COOH terminus. In this study we show that NSR1 itself has a bipartite nuclear localization sequence. Deletion of either basic amino acid stretch results in the mislocation of NSR1 to the cytoplasm. We further demonstrate that either of two regions, the NH2 terminus or both RNA recognition motifs, are sufficient to localize a bacterial protein, beta-galactosidase, to the nucleolus. Intensive deletion analysis has further defined a specific acidic/serine-rich region within the NH2 terminus as necessary for nucleolar accumulation rather than nucleolar targeting. In addition, deletion of either RNA recognition motif or point mutations in one of the RNP consensus octamers results in the mislocalization of a fusion protein within the nucleus. Although the glycine/arginine-rich region in the COOH terminus is not sufficient to bring beta-galactosidase to the nucleolus, our studies show that this domain is necessary for nucleolar accumulation when an RNP consensus octamer in one of the RNA recognition motifs is mutated. Our findings are consistent with the notion that nucleolar localization is a result of the binding interactions of various domains of NSR1 within the nucleolus rather than the presence of a specific nucleolar targeting signal.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Irene Beusch ◽  
Pierre Barraud ◽  
Ahmed Moursy ◽  
Antoine Cléry ◽  
Frédéric Hai-Trieu Allain

HnRNP A1 regulates many alternative splicing events by the recognition of splicing silencer elements. Here, we provide the solution structures of its two RNA recognition motifs (RRMs) in complex with short RNA. In addition, we show by NMR that both RRMs of hnRNP A1 can bind simultaneously to a single bipartite motif of the human intronic splicing silencer ISS-N1, which controls survival of motor neuron exon 7 splicing. RRM2 binds to the upstream motif and RRM1 to the downstream motif. Combining the insights from the structure with in cell splicing assays we show that the architecture and organization of the two RRMs is essential to hnRNP A1 function. The disruption of the inter-RRM interaction or the loss of RNA binding capacity of either RRM impairs splicing repression by hnRNP A1. Furthermore, both binding sites within the ISS-N1 are important for splicing repression and their contributions are cumulative rather than synergistic.


RNA ◽  
1998 ◽  
Vol 4 (9) ◽  
pp. 1111-1123 ◽  
Author(s):  
AKILA MAYEDA ◽  
STEPHEN H. MUNROE ◽  
RUI-MING XU ◽  
ADRIAN R. KRAINER

2007 ◽  
Vol 27 (4-5) ◽  
pp. 225-234 ◽  
Author(s):  
Fang Hong ◽  
Kotb Attia ◽  
Chun Wei ◽  
Kegui Li ◽  
Guangming He ◽  
...  

RNA recognition motifs as important regulators of gene expression are highly conserved in animals and plants. The FCA floral promotion gene in Arabidopsis encodes a protein, containing two RNA recognition motifs (RRM) and a WW protein interaction domain. Here we isolated FCA cDNA from rice. FCA in rice (rFCA) was homologous to FCA-gamma of Arabidopsis and contained conserved domains. To investigate the function of RRM domain, fragment RRM1 and RRM2 of rFCA were introduced into rice subspecies Oryza sativa L. subsp. Indica var. 9311 and another rice subspecies Oryza sativa L. subsp. Japonica var. zhonghua11 transformation. Two transgenic lines exhibited similar phenotypes, flowering time delay, seed size and cell volume of transgenic plants was increased. These results showed that constitutive expression of RRMs could regulate cellular size. The patterns of overexpression of two RRM domains and their similar morphologies indicate they may play a same role.


Structure ◽  
1997 ◽  
Vol 5 (4) ◽  
pp. 559-570 ◽  
Author(s):  
Rui-Ming Xu ◽  
Lana Jokhan ◽  
Xiaodong Cheng ◽  
Akila Mayeda ◽  
Adrian R Krainer

Sign in / Sign up

Export Citation Format

Share Document