recognition motifs
Recently Published Documents


TOTAL DOCUMENTS

329
(FIVE YEARS 61)

H-INDEX

58
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Budharaju Harshavardhan ◽  
Allen Zennifer ◽  
Swaminathan Sethuraman ◽  
Arghya Paul ◽  
Dhakshinamoorthy Sundaramurthi

DNA has excellent features such as the presence of functional and targeted molecular recognition motifs, tailorable, defined material source, multifunctionality, high–precision molecular self–assembly, synthetic preparation, hydrophilicity and outstanding biocompatibility. Due...


2021 ◽  
Author(s):  
Matthew Batchelor ◽  
Robert S Dawber ◽  
Andrew J Wilson ◽  
Richard Bayliss

How cellular functions are regulated through protein phosphorylation events that promote or inhibit protein-protein interactions (PPIs) is key to understanding regulatory molecular mechanisms. Whilst phosphorylation can orthosterically or allosterically influence protein recognition, phospho-driven changes in the conformation of recognition motifs are less well explored. We recently discovered that clathrin heavy chain recognises phosphorylated TACC3 through a helical motif that, in the unphosphorylated protein, is disordered. However, it was unclear whether and how phosphorylation could stabilize a helix in a broader context. In the current manuscript, we address this challenge using poly-Ala based model peptides and a suite of circular dichroism and nuclear magnetic resonance spectroscopies. We show that phosphorylation of a Ser residue stabilizes the α-helix in the context of an Arg(i - 3)pSeri Lys(i + 4) triad through charge-reinforced side chain interactions with positive co-operativity, whilst phosphorylation of Thr induces an opposing response. This is significant as it may represent a general method for control of PPIs by phosphorylation; basic kinase-substrate motifs are common with 55 human protein kinases recognising an Arg at a position -3 from the phosphorylated Ser, whilst the Arg(i - 3)pSeri Lys(i + 4) is a motif found in over 2000 human proteins.


2021 ◽  
Author(s):  
Jone Amuategi ◽  
Rocio Alonso ◽  
Helena Ostolaza

Adenylate Cyclase Toxin (ACT or CyaA) is an important virulence factor secreted by Bordetella pertussis, the bacterium causative of whooping cough, playing an essential role in the establishment of infection in the respiratory tract. ACT is a pore-forming cytolysin belonging to the RTX (Repeats in ToXin) family of leukotoxins, capable of permeabilizing several cell types and pure lipid vesicles. Besides, the toxin delivers its N-terminal adenylate cyclase domain into the target cytosol, where catalyzes the conversion of ATP into cAMP, which affects cell signalling. In this study we have made two major observations. First, we show that ACT binds free cholesterol, and identify in its sequence 38 potential cholesterol-recognition motifs. Second, we reveal that four of those motifs are real, functional cholesterol-binding sites. Mutations of the central phenylalanine residues in said motifs have an important impact on the ACT lytic and translocation activities, suggesting their direct intervention in cholesterol recognition and toxin functionality. From our data a likely transmembrane topology can be inferred for the ACT helices constituting the translocation and the hydrophobic regions. From this topology a simple and plausible mechanism emerges by which ACT could translocate its AC domain into target cells, challenging previous views in the field. Blocking the ACT-cholesterol interactions might thus be an effective approach for inhibiting ACT toxicity on cells, and this could help in mitigating the severity of pertussis disease in humans.


2021 ◽  
Vol 118 (48) ◽  
pp. e2108776118
Author(s):  
Nina Romantini ◽  
Shahidul Alam ◽  
Stefanie Dobitz ◽  
Martin Spillmann ◽  
Martina De Foresta ◽  
...  

G protein–coupled receptors (GPCRs) are one of the most important drug–target classes in pharmaceutical industry. Their diversity in signaling, which can be modulated with drugs, permits the design of more effective and better-tolerated therapeutics. In this work, we have used rigid oligoproline backbones to generate bivalent ligands for the gastrin-releasing peptide receptor (GRPR) with a fixed distance between their recognition motifs. This allows the stabilization of GPCR dimers irrespective of their physiological occurrence and relevance, thus expanding the space for medicinal chemistry. Specifically, we observed that compounds presenting agonists or antagonists at 20- and 30-Å distance induce GRPR dimerization. Furthermore, we found that 1) compounds with two agonists at 20- and 30-Å distance that induce dimer formation show bias toward Gq efficacy, 2) dimers with 20- and 30-Å distance have different potencies toward β-arrestin-1 and β-arrestin-2, and 3) the divalent agonistic ligand with 10-Å distance specifically reduces Gq potency without affecting β-arrestin recruitment, pointing toward an allosteric effect. In summary, we show that rigid oligoproline backbones represent a tool to develop ligands with biased GPCR signaling.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shuai Lu ◽  
Cong Gao ◽  
Yongzhou Wang ◽  
Yingying He ◽  
Junrong Du ◽  
...  

In all organisms, splicing occurs through the formation of spliceosome complexes, and splicing auxiliary factors are essential during splicing. U2AF65 is a crucial splicing cofactor, and the two typical RNA-recognition motifs at its center recognize and bind the polypyrimidine sequence located between the intron branch site and the 3′-splice site. U2AF65A is a member of the U2AF65 gene family, with pivotal roles in diseases in mammals, specifically humans; however, few studies have investigated plant U2AF65A, and its specific functions are poorly understood. Therefore, in the present study, we systematically identified U2AF65A in plant species from algae to angiosperms. Based on 113 putative U2AF65A sequences from 33 plant species, phylogenetic analyses were performed, followed by basic bioinformatics, including the comparisons of gene structure, protein domains, promoter motifs, and gene expression levels. In addition, using rice as the model crop, we demonstrated that the OsU2AF65A protein is localized to the nucleus and cytoplasm, and it is involved in responses to various stresses, such as drought, high salinity, low temperature, and heavy metal exposure (e.g., cadmium). Using Arabidopsis thaliana and rice mutants, we demonstrated that U2AF65A is involved in the accumulation of plant biomass, growth of hypocotyl upon thermal stimulation, and reduction of tolerance of high temperature stress. These findings offer an overview of the U2AF65 gene family and its stress response functions, serving as the reference for further comprehensive functional studies of the essential specific splicing cofactor U2AF65A in the plant kingdom.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhigang Li ◽  
Qingyu Guo ◽  
Jiaxin Zhang ◽  
Zitong Fu ◽  
Yifei Wang ◽  
...  

The RNA-binding motif (RBM) proteins are a class of RNA-binding proteins named, containing RNA-recognition motifs (RRMs), RNA-binding domains, and ribonucleoprotein motifs. RBM proteins are involved in RNA metabolism, including splicing, transport, translation, and stability. Many studies have found that aberrant expression and dysregulated function of RBM proteins family members are closely related to the occurrence and development of cancers. This review summarizes the role of RBM proteins family genes in cancers, including their roles in cancer occurrence and cell proliferation, migration, and apoptosis. It is essential to understand the mechanisms of these proteins in tumorigenesis and development, and to identify new therapeutic targets and prognostic markers.


Chemosensors ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 302
Author(s):  
Daniel D. Ta ◽  
Sergei V. Dzyuba

Small molecule-based chromogenic and fluorogenic probes play an indispensable role in many sensing applications. Ideal optical chemosensors should provide selectivity and sensitivity towards a variety of analytes. Synthetic accessibility and attractive photophysical properties have made squaraine dyes an enticing platform for the development of chemosensors. This review highlights the versatility of modular assemblies of squaraine-based chemosensors and chemodosimeters that take advantage of the availability of various structurally and functionally diverse recognition motifs, as well as utilizing additional recognition capabilities due to the unique structural features of the squaraine ring.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zahra Iqbal ◽  
Mohammed Shariq Iqbal ◽  
Lalida Sangpong ◽  
Gholamreza Khaksar ◽  
Supaart Sirikantaramas ◽  
...  

Abstract Background Fruit ripening is an intricate developmental process driven by a highly coordinated action of complex hormonal networks. Ethylene is considered as the main phytohormone that regulates the ripening of climacteric fruits. Concomitantly, several ethylene-responsive transcription factors (TFs) are pivotal components of the regulatory network underlying fruit ripening. Calmodulin-binding transcription activator (CAMTA) is one such ethylene-induced TF implicated in various stress and plant developmental processes. Results Our comprehensive analysis of the CAMTA gene family in Durio zibethinus (durian, Dz) identified 10 CAMTAs with conserved domains. Phylogenetic analysis of DzCAMTAs, positioned DzCAMTA3 with its tomato ortholog that has already been validated for its role in the fruit ripening process through ethylene-mediated signaling. Furthermore, the transcriptome-wide analysis revealed DzCAMTA3 and DzCAMTA8 as the highest expressing durian CAMTA genes. These two DzCAMTAs possessed a distinct ripening-associated expression pattern during post-harvest ripening in Monthong, a durian cultivar native to Thailand. The expression profiling of DzCAMTA3 and DzCAMTA8 under natural ripening conditions and ethylene-induced/delayed ripening conditions substantiated their roles as ethylene-induced transcriptional activators of ripening. Similarly, auxin-suppressed expression of DzCAMTA3 and DzCAMTA8 confirmed their responsiveness to exogenous auxin treatment in a time-dependent manner. Accordingly, we propose that DzCAMTA3 and DzCAMTA8 synergistically crosstalk with ethylene during durian fruit ripening. In contrast, DzCAMTA3 and DzCAMTA8 antagonistically with auxin could affect the post-harvest ripening process in durian. Furthermore, DzCAMTA3 and DzCAMTA8 interacting genes contain significant CAMTA recognition motifs and regulated several pivotal fruit-ripening-associated pathways. Conclusion Taken together, the present study contributes to an in-depth understanding of the structure and probable function of CAMTA genes in the post-harvest ripening of durian.


2021 ◽  
Author(s):  
Zhaoxi Sun ◽  
Qiaole He ◽  
Zhihao Gong ◽  
Payam Kalhor ◽  
Zhe Huai ◽  
...  

Atomic-level understanding of the dynamical feature of host-guest interactions remains a central challenge in supramolecular chemistry. The remarkable guest binding behavior of the Cucurbiturils family of supramolecular containers makes them promising drug carriers. Among Cucurbit[n]urils, Cucurbit[8]uril (CB8) has intermediate portal size and cavity volume. It can exploit almost all host-guest recognition motifs formed by this host family. In our previous work, an extensive computational investigation of the binding of 7 commonly abused and structurally diverse drugs to the CB8 host was performed and a general dynamical binding picture of CB8-guest interactions was obtained. Further, two widely used fixed-charge models for drug-like molecules were investigated and compared in great detail, aiming at providing guidelines in choosing an appropriate charge scheme in host-guest modelling. Iterative refitting of atomic charges leads to improved binding thermodynamics and the best root-mean-squared deviation from the experimental reference is 2.6 kcal/mol. In this work, we focus on a thorough evaluation of the remaining parts of classical force fields, i.e., the bonded interactions. The widely used general Amber force fields are assessed and refitted to improve the intra-molecular conformational preference and thus the description of inter-molecular host-guest interactions. The interaction pattern and binding thermodynamics show significant dependence on the modelling parameters. The refitted system-specific parameter set improves the consistency of the modelling results and the experimental reference significantly. Finally, combining the previous charge-scheme comparison and the current force-field refitting, we provide general guidelines for the theoretical modelling of host-guest binding.


2021 ◽  
Author(s):  
Eliezra Glasser ◽  
Debanjana Maji ◽  
Guilia Biancon ◽  
Anees Mohammed Keedakkatt Puthenpeedikakkal ◽  
Chapin Cavender ◽  
...  

The essential pre-mRNA splicing factor U2AF2 (also called U2AF65) identifies polypyrimidine (Py) tract signals of nascent transcripts, despite length and sequence variations. Previous studies have shown that the U2AF2 RNA recognition motifs (RRM1 and RRM2) preferentially bind uridine-rich RNAs. Nonetheless, the specificity of the RRM1/RRM2 interface for the central Py tract nucleotide has yet to be investigated. We addressed this question by determining crystal structures of U2AF2 bound to a cytidine, guanosine, or adenosine at the central position of the Py tract, and compared U2AF2-bound uridine structures. Local movements of the RNA site accommodated the different nucleotides, whereas the polypeptide backbone remained similar among the structures. Accordingly, molecular dynamics simulations revealed flexible conformations of the central, U2AF2-bound nucleotide. The RNA binding affinities and splicing efficiencies of structure-guided mutants demonstrated that U2AF2 tolerates nucleotide substitutions at the central position of the Py tract. Moreover, enhanced crosslinking and immunoprecipitation of endogenous U2AF2 in human erythroleukemia cells showed uridine-sensitive binding sites with lower sequence conservation at the central nucleotide positions of otherwise uridine-rich, U2AF2-bound splice sites. Altogether, these results highlight the importance of RNA flexibility for protein recognition and take a step towards relating splice site motifs to pre-mRNA splicing efficiencies.


Sign in / Sign up

Export Citation Format

Share Document