scholarly journals Maladaptive Modulations of NLRP3 Inflammasome and Cardioprotective Pathways Are Involved in Diet-Induced Exacerbation of Myocardial Ischemia/Reperfusion Injury in Mice

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Raffaella Mastrocola ◽  
Massimo Collino ◽  
Claudia Penna ◽  
Debora Nigro ◽  
Fausto Chiazza ◽  
...  

Excessive fatty acids and sugars intake is known to affect the development of cardiovascular diseases, including myocardial infarction. However, the underlying mechanisms are ill defined. Here we investigated the balance between prosurvival and detrimental pathways within the heart of C57Bl/6 male mice fed a standard diet (SD) or a high-fat high-fructose diet (HFHF) for 12 weeks and exposed to cardiacex vivoischemia/reperfusion (IR) injury. Dietary manipulation evokes a maladaptive response in heart mice, as demonstrated by the shift of myosin heavy chain isoform content fromαtoβ, the increased expression of the Nlrp3 inflammasome and markers of oxidative metabolism, and the downregulation of the hypoxia inducible factor- (HIF-)2αand members of the Reperfusion Injury Salvage Kinases (RISK) pathway. When exposed to IR, HFHF mice hearts showed greater infarct size and lactic dehydrogenase release in comparison with SD mice. These effects were associated with an exacerbated overexpression of Nlrp3 inflammasome, resulting in marked caspase-1 activation and a compromised activation of the cardioprotective RISK/HIF-2αpathways. The common mechanisms of damage here reported lead to a better understanding of the cross-talk among prosurvival and detrimental pathways leading to the development of cardiovascular disorders associated with metabolic diseases.

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
W Zuo ◽  
R Tian ◽  
Q Chen ◽  
L Wang ◽  
Q Gu ◽  
...  

Abstract Background Myocardial ischemia-reperfusion injury (MIRI) is one of the leading causes of human death. Nod-like receptor protein-3 (NLRP3) inflammasome signaling pathway involved in the pathogenesis of MIRI. However, the upstream regulating mechanisms of NLRP3 at molecular level remains unknown. Purpose This study investigated the role of microRNA330-5p (miR-330-5p) in NLRP3 inflammasome-mediated MIRI and the associated mechanism. Methods Mice underwent 45 min occlusion of the left anterior descending coronary artery followed by different times of reperfusion. Myocardial miR-330-5p expression was examined by quantitative polymerase chain reaction (PCR), and miR-330-5p antagomir and agomir were used to regulate miR-330-5p expression. To evaluate the role of miR-330-5p in MIRI, Evans Blue (EB)/2, 3, 5-triphenyltetrazolium chloride (TTC) staining, echocardiography, and immunoblotting were used to assess infarct volume, cardiac function, and NLRP3 inflammasome activation, respectively. Further, in vitro myocardial ischemia-reperfusion model was established in cardiomyocytes (H9C2 cell line). A luciferase binding assay was used to examine whether miR-330-5p directly bound to T-cell immunoglobulin domain and mucin domain-containing molecule-3 (TIM3). Finally, the role of miR-330-5p/TIM3 axis in regulating apoptosis and NLRP3 inflammasome formation were evaluated using flow cytometry assay and immunofluorescence staining. Results Compared to the model group, inhibiting miR-330-5p significantly aggravated MIRI resulting in increased infarct volume (58.09±6.39% vs. 37.82±8.86%, P<0.01) and more severe cardiac dysfunction (left ventricular ejection fraction [LVEF] 12.77%±6.07% vs. 27.44%±4.47%, P<0.01; left ventricular end-diastolic volume [LVEDV] 147.18±25.82 vs. 101.31±33.20, P<0.05; left ventricular end-systolic volume [LVESV] 129.11±30.17 vs. 74.29±28.54, P<0.05). Moreover, inhibiting miR-330-5p significantly increased the levels of NLRP3 inflammasome related proteins including caspase-1 (0.80±0.083 vs. 0.60±0.062, P<0.05), interleukin (IL)-1β (0.87±0.053 vs. 0.79±0.083, P<0.05), IL-18 (0.52±0.063 vs. 0.49±0.098, P<0.05) and tissue necrosis factor (TNF)-α (1.47±0.17 vs. 1.03±0.11, P<0.05). Furthermore, TIM3 was confirmed as a potential target of miR-330-5p. As predicted, suppression of TIM3 by small interfering RNA (siRNA) ameliorated the anti-miR-330-5p-mediated apoptosis of cardiomyocytes and activation of NLRP3 inflammasome signaling pathway (Figure 1). Conclusion Overall, our study indicated that miR-330-5p/TIM3 axis involved in the regulating mechanism of NLRP3 inflammasome-mediated myocardial ischemia-reperfusion injury. Figure 1 Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): National Natural Science Foundation of China Grants


2008 ◽  
Vol 74 (8) ◽  
pp. 1009-1016 ◽  
Author(s):  
Atsunori Nakao ◽  
Gaetano Faleo ◽  
Hiroko Shimizu ◽  
Kiichi Nakahira ◽  
Junichi Kohmoto ◽  
...  

2021 ◽  
Vol 9 (6) ◽  
Author(s):  
Briana K. Shimada ◽  
Naaiko Yorichika ◽  
Jason K. Higa ◽  
Yuichi Baba ◽  
Motoi Kobayashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document