scholarly journals Finite Element Optimised Back Analysis of In Situ Stress Field and Stability Analysis of Shaft Wall in the Underground Gas Storage

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Yifei Yan ◽  
Bing Shao ◽  
Jianguo Xu ◽  
Xiangzhen Yan

A novel optimised back analysis method is proposed in this paper. The in situ stress field of an underground gas storage (UGS) reservoir in a Turkey salt cavern is analysed by the basic theory of elastic mechanics. A finite element method is implemented to optimise and approximate the objective function by systematically adjusting boundary loads. Optimising calculation is performed based on a novel method to reduce the error between measurement and calculation as much as possible. Compared with common back analysis methods such as regression method, the method proposed can further improve the calculation precision. By constructing a large circular geometric model, the effect of stress concentration is eliminated and a minimum difference between computed and measured stress can be guaranteed in the rectangular objective region. The efficiency of the proposed method is investigated and confirmed by its capability on restoring in situ stress field, which agrees well with experimental results. The characteristics of stress distribution of chosen UGS wells are obtained based on the back analysis results and by applying the corresponding fracture criterion, the shaft walls are proven safe.

2003 ◽  
Vol 2003 (2) ◽  
pp. 1-5 ◽  
Author(s):  
Scott D. Reynolds ◽  
Richard R. Hillis ◽  
Evelina Paraschivoiu

2019 ◽  
Vol 102 ◽  
pp. 61-73 ◽  
Author(s):  
Wei Ju ◽  
Bo Jiang ◽  
Yong Qin ◽  
Caifang Wu ◽  
Geoff Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document