scholarly journals An Alternative Approach for High Speed Railway Carrying Capacity Calculation Based on Multiagent Simulation

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Mo Gao ◽  
Leishan Zhou ◽  
Yongjun Chen

It is a multiobjective mixed integer programming problem that calculates the carrying capacity of high speed railway based on mathematical programming method. The model is complex and difficult to solve, and it is difficult to comprehensively consider the various influencing factors on the train operation. The multiagent theory is employed to calculate high speed railway carrying capacity. In accordance with real operations of high speed railway, a three-layer agent model is developed to simulate the operating process of high speed railway. In the proposed model, railway network agent, line agent, station agent, and train agent are designed, respectively. To validate the proposed model, a case study is performed for Beijing–Shanghai high speed railway by using NetLogo software. The results are consistent with the actual data, which implies that the proposed multiagent method is feasible to calculate the carrying capacity of high speed railway.

2019 ◽  
Vol 48 (1) ◽  
pp. 31-38
Author(s):  
Wen Xu ◽  
Yuyan Tan ◽  
Bishal Sharma ◽  
Ziyulong Wang

Due to several obvious advantages both in transport marketing and train operation planning, the cyclic timetable has already applied in many high-speed railway (HSR) countries. In order to adopt the cyclic timetable in China's HSR system, a Mixed Integer Programmer (MIP) model is proposed in this paper involving many general constraints, such as running time, dwell time, headway, and connection constraints. In addition, the real-world overtaking rule that concerning a train with higher priority will not be overtaken by a slower one is incorporated into the cyclic timetable optimization model. An approach based on fixed departure is proposed to get a cyclic timetable with minimum total journey time within a reasonable time. From numerical investigations using data from Guangzhou-Zhuhai HSR line in China, the proposed model and associated approach are tested and shown to be effective.


Author(s):  
Minling Feng ◽  
Chaoxian Wu ◽  
Shaofeng Lu ◽  
Yihui Wang

Automatic train operation (ATO) systems are fast becoming one of the key components of the intelligent high-speed railway (HSR). Designing an effective optimal speed trajectory for ATO is critical to guide the high-speed train (HST) to operate with high service quality in a more energy-efficient way. In many advanced HSR systems, the traction/braking systems would provide multiple notches to satisfy the traction/braking demands. This paper modelled the applied force as a controlled variable based on the selection of notch to realise a notch-based train speed trajectory optimisation model to be solved by mixed integer linear programming (MILP). A notch selection model with flexible vertical relaxation was proposed to allow the traction/braking efforts to change dynamically along with the selected notch by introducing a series of binary variables. Two case studies were proposed in this paper where Case study 1 was conducted to investigate the impact of the dynamic notch selection on train operations, and the optimal result indicates that the applied force can be flexibly adjusted corresponding to different notches following a similar operation sequence determined by optimal train control theory. Moreover, in addition to the maximum traction/braking notches and coasting, medium notches with appropriate vertical relaxation would be applied in accordance with the specific traction/braking demands to make the model feasible. In Case study 2, a comprehensive numerical example with the parameters of CRH380AL HST demonstrates the robustness of the model to deal with the varying speed limit and gradient in a real-world scenario. The notch-based model is able to obtain a more realistic optimal strategy containing dynamic notch selection and speed trajectory with an increase (1.622%) in energy consumption by comparing the results of the proposed model and the non-notch model.


2015 ◽  
Vol 744-746 ◽  
pp. 1786-1791
Author(s):  
Qian Rui Zhao ◽  
Qi Zhang ◽  
Pei Liu

Carrying capacity calculation at high-speed railway stations is closely related to the trains with different types and arriving rules. Traditional method is not feasible to calculate and evaluate carrying capacity at high-speed railway stations efficiently and accurately. Therefore, a method to calculate carrying capacity at high-speed railway stations was presented by establishing a route selection optimization model and designing corresponding algorithm. In the method, the integration concept of calculating carrying capacity was introduced by establishing the relationship between receiving dispatching route and arrival-departure track. An approach was provided to the solution of route selection scheme and calculating carrying capacity at high-speed railway stations efficiently and accurately by considering the differences of trains with different operation modes and operation time. Case study of Jinan West railway station verifies the feasibility of the method. The presented method can provide a technical support for calculating and evaluating carrying capacity at high-speed railway stations in different scenarios.


Author(s):  
Yinggui Zhang ◽  
Zengru Chen ◽  
Min An ◽  
Aliyu Mani Umar

Train delay is a serious issue that can spread rapidly in the railway network leading to further delay of other trains and detention of passengers in stations. However, the current practice in the event of the trail delay usually depends on train dispatcher’s experience, which cannot manage train operation effectively and may have safety risks. The application of intelligent railway monitor and control system can improve train operation management while increasing railway safety. This paper presents a methodology in which train timetabling, platforming and routing models are combined by studying the real-time adjustment and optimization of high-speed railway in the case of the train delay in order to produce a cooperative adjustment algorithm so that the train operation adjustment plan can be obtained. MATLAB computer programs have been developed based on the proposed methodology and adjustment criteria have been established from knowledge data bases in order to calculate optimized solutions. A case study is used to demonstrate the proposed methodology. The results show that the proposed method can quickly adjust the train operation plan in the case of the train delay, restore the normal train operation order, and reduce the impact of train delay on railway network effectively and efficiently.


2012 ◽  
Vol 253-255 ◽  
pp. 1158-1162
Author(s):  
Xiao Juan Li ◽  
Bao Ming Han ◽  
De Wei Li ◽  
Hua Li

The trains on Passenger Dedicated Lines have higher speed, less kinds of train types and less stops than that on existing lines, so the line carrying capacity on PDL can be calculated based on the stops adjustment of the trains reasonably. Based on the traditional calculation method of deduction coefficient, it makes the line through capacity has the same times and mode of stops as the deduction foundation, and get the final capacity by stops adjustment. Combining with the Beijing-Shanghai high-speed railway, it calculates the line through capacity in different condition respectively. It proves the method of line capacity calculation is available in the reality.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 503
Author(s):  
Zicong Meng ◽  
Tao Tang ◽  
Guodong Wei ◽  
Lei Yuan

With the gradual maturity of the automatic train operation (ATO) system in subways, its application scope has also expanded to the high-speed railway field. Considering that the ATO system is still in the early stages of operation, it will take time to fully mature, and definite specifications of the requirements for system operation have not yet been formed. This paper presents the operational design domain (ODD) of the high-speed railway ATO system and proposes a scenario analysis method based on the operational design domain to obtain the input conditions of the system requirements. The article models and verifies the scenario of the linkage control of the door and platform door based on the UPPAAL tools and extracts the input and expected output of the system requirements of the vehicle ATO system. Combined with the input conditions of the system requirements, the system requirements of the vehicle ATO in this scenario are finally obtained, which provides a reference for future functional specification generation and test case generation.


Sign in / Sign up

Export Citation Format

Share Document