scholarly journals Circularly Polarized Transparent Microstrip Patch Reflectarray Integrated with Solar Cell for Satellite Applications

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
S. H. Zainud-Deen ◽  
N. A. El-Shalaby ◽  
S. M. Gaber ◽  
H. A. Malhat

Circularly polarized (CP) transparent microstrip reflectarray antenna is integrated with solar cell for small satellite applications at 10 GHz. The reflectarray unit cell consists of a perfect electric conductor (PEC) square patch printed on an optically transparent substrate with the PEC ground plane. A comparison between using transparent conducting polymers and using the PEC in unit-cell construction has been introduced. The waveguide simulator is used to calculate the required compensation phase of each unit cell in the reflectarray. The radiation characteristics of 13 × 13 CP transparent reflectarray antenna are investigated. A circularly polarized horn antenna is used to feed the reflectarray. The solar cell is incorporated with the transparent reflectarray on the same area. The solar-cell integration with the reflectarray reduces the maximum gain by about 0.5 dB due to the increase in the magnitude of the reflection coefficient. The results are calculated using the finite integral technique (FIT).

2017 ◽  
Vol 9 (7) ◽  
pp. 1509-1516 ◽  
Author(s):  
Eric Arnaud ◽  
Cyrille Menudier ◽  
Jamil Fouany ◽  
Thierry Monediere ◽  
Marc Thevenot

This paper presents an original solution to design a compact dual circularly polarized isoflux antenna for nanosatellite applications. This kind of antenna has been previously designed in our laboratory, for a single circular polarization. This antenna is composed of a dual circularly polarized feed and a choke horn antenna. This feed is a cross-shaped slot in the ground plane, which provides coupling between a patch and a ring microstrip line with two ports. It is located at the center of a choke horn antenna. The simulated antenna presents an axial ratio <3 dB and a realized gain close to 0 dB over a 400 MHz bandwidth (8.0–8.4 GHz) at the limit of coverage, i.e. 65° whatever the azimuth angle (φ) and the port. A 20 dB matching for each port and 13 dB isolation characteristics between the two ports have been achieved on this bandwidth. It has been realized and successfully measured.


Author(s):  
Mohd Fairus Mohd Yusoff ◽  
Ronan Sauleau ◽  
Zaharah Johari ◽  
Mohamad Kamal A. Rahim ◽  
Huda A. Majid

A novel right-handed circular polarization (RHCP) folded reflectarray antenna with optimized parameters is presented at 60GHz. The RHCP folded reflectarray antenna is designed using left handed circularly polarized selective surface (LHCPSS) Pierrot unit cell. Through simulation, it is shown that the antenna operates well at 60GHz. The maximum antenna directivity is 19dB with a reflection coefficient below -15dB. The radiation patterns showed good responses with side lobes level below -10dB. In addition, the best axial ratio at 60GHz is achieved as 0.75dB.


2015 ◽  
Vol 4 (1) ◽  
pp. 36 ◽  
Author(s):  
H. A. Malhat ◽  
N. A. Eltresy ◽  
S. H. Zainud-Deen ◽  
K. H. Awadalla

Nanoantennas have introduced wide bandwidth for fast data communications. The material properties of good conducting metals introduce plasmonic behavior at Terahertz frequencies. The material property of good conducting metals using Drude Lorentz model has been investigated. The radiation characteristics of nano-dielectric resonator antenna (NDRA) reflectarray at 633 nm have been investigated. A parametric study for the nano DRA unit cell dimensions and material has been introduced. A NDR with silver ground plane have been designed and analyzed. A nano-transmitarray unit-cell has been introduced for the analysis. A comparison between the radiation characteristics of 17×17 and 21×21 NDRA transmitarray has been given. A compromise between the nano-transmitarray size, maximum gain, and operating bandwidth is applied to Terahertz applications. The finite integral technique is used to carry a full wave analysis to design a NDRA reflectarray and a NDRA transmitarray.


2019 ◽  
Vol 11 (7) ◽  
pp. 703-710 ◽  
Author(s):  
Lingasamy Veluchamy ◽  
Gulam Nabi Alsath Mohammed ◽  
T. Selvan Krishnasamy ◽  
Rajeev Jyoti

AbstractThis paper presents the design and analysis of a wideband X/Ku and Ku band reflectarray antenna. The proposed unit cell of the reflectarray antenna comprises a patch loaded with two distinct slots, viz. a square ring and a cross loop, printed on a low loss substrate, which is backed by a foam-loaded ground plane. The unit cell element offers a linear and large dynamic reflection phase range, which is achieved by optimizing the shape, location, and geometrical parameters of the two slots loaded on the patch. A 324 element microstrip reflectarray antenna of size 200 × 200 mm2 is constructed and analyzed for its radiation characteristics by simulation and measurement. The reflectarray offers a 3 dB gain bandwidth of 50.75% with the operating frequency range of 10–16.8 GHz. It offers a peak gain and aperture efficiency of 25.4 dB and 40% at 12.6 GHz, respectively. The cross-polarization level is below −40 dB over the entire operating frequency range.


2010 ◽  
Vol 130 (8) ◽  
pp. 724-732
Author(s):  
Ryosuke Hasegawa ◽  
Mariko Tomisawa ◽  
Masamitsu Tokuda

Author(s):  
Agus Hendra Wahyudi ◽  
Josaphat Tetuko Sri Sumantyo ◽  
Folin Oktafiani ◽  
Hardi Nusantara ◽  
Ari Sugeng Budiyanta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document