scholarly journals X-band compact dual circularly polarized isoflux antenna for nanosatellite applications

2017 ◽  
Vol 9 (7) ◽  
pp. 1509-1516 ◽  
Author(s):  
Eric Arnaud ◽  
Cyrille Menudier ◽  
Jamil Fouany ◽  
Thierry Monediere ◽  
Marc Thevenot

This paper presents an original solution to design a compact dual circularly polarized isoflux antenna for nanosatellite applications. This kind of antenna has been previously designed in our laboratory, for a single circular polarization. This antenna is composed of a dual circularly polarized feed and a choke horn antenna. This feed is a cross-shaped slot in the ground plane, which provides coupling between a patch and a ring microstrip line with two ports. It is located at the center of a choke horn antenna. The simulated antenna presents an axial ratio <3 dB and a realized gain close to 0 dB over a 400 MHz bandwidth (8.0–8.4 GHz) at the limit of coverage, i.e. 65° whatever the azimuth angle (φ) and the port. A 20 dB matching for each port and 13 dB isolation characteristics between the two ports have been achieved on this bandwidth. It has been realized and successfully measured.

Author(s):  
Karunesh Srivastava ◽  
Brijesh Mishra ◽  
Rajeev Singh

Abstract A circularly polarized stub-matched inverted L-shaped antenna for C-band applications is presented in this communication. Antenna parameters of inverted L-shape on the radiating patch and slits, notch, square strips and stub on the ground plane and the effect of these are analyzed. The proposed optimized antenna (A5: 0.54λ0 × 0.54λ0 × 0.02λ0 mm3) is selected among antennas (A1 – A5) with 5.1 GHz design frequency after simulation through high-frequency structure simulator (HFSS). Circular polarization is obtained by introducing stub/perturbation on the ground plane. By introducing stub, the highest measured (S11 < − 10 dB) impedance bandwidth of 50.9% (3.48 – 5.86 GHz) is observed amongst the reported and compared bandwidths. Peak gain of 5.32 dBi and 3 dB axial ratio bandwidth of 16.2% (4.71 – 5.54 GHz) is reported in the present work. An antenna is useful in the entire downlink frequency (3.7 – 4.2 GHz) of the C band.


2015 ◽  
Vol 9 (1) ◽  
pp. 197-203
Author(s):  
Eric Arnaud ◽  
Luc Duchesne ◽  
Kevin Elis ◽  
Jamil Fouany ◽  
Thierry Monediere ◽  
...  

This paper presents a solution to reduce the feed complexity and to improve the total efficiency of X-band compact choke horn antenna with circular polarization and isoflux pattern. This kind of antenna had been designed before by our laboratory for nanosatellite applications, but it required a 4-way divider with phase shifter which generates the insertion losses and therefore a lower realized gain (RG). Among several feeds, a uniform circular helix antenna has been used here, which produces a satisfying feed without too much damage for the axial ratio (AR) and the isoflux pattern over a 400 MHz radiation bandwidth (8.0–8.4 GHz). Theoretical and experimental results show an AR lower than 5 dB and a RG higher than 0 dB at the limit of coverage, i.e. 65° whatever the azimuth angle (φ).


2019 ◽  
Vol 4 (2019) ◽  
pp. 50-54
Author(s):  
Zaw Myo Lwin ◽  
Thae Su Aye

This paper presents a rectangular-shaped printed monopole antenna with circular polarization for Wi-Fi (2.4–2.484 GHz) and WiMAX (3.3-3.7 GHz) bands. The antenna relies on asymmetric arrangement of the patch with respect to the microstrip feed, in order to generate circular polarization. Dual-band (Wi-Fi and WiMAX) operation is enabled by inserting a slit in the corner of the ground plane. Simulation results show a bandwidth increase of 15.9% (2.2–2.58 GHz) for Wi-Fi, and of 24.16% (3.13–3.99 GHz) for WiMAX applications. Furthermore, beamwidths at the axial ratio of 3 dB equal 48˚ and 51˚ for the x-z plane and y-z planes, respectively.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Dalia M. Elsheakh ◽  
Magdy F. Iskander

This paper describes the design and development of a triband with circularly polarized quasi-Yagi antenna for ka-band and short range wireless communications applications. The proposed antenna consists of an integrated balun-fed printed dipole, parasitic folded dipole and a short strip, and a modified ground plane. The antenna structure, together with the parasitic elements, is designed to achieve circular polarization and triband operating at resonant frequencies of 13.5 GHz, 30 GHz, and 60 GHz. Antenna design was first simulated using HFSS ver.14, and the obtained results were compared with experimental measurements on a prototype developed on a single printed circuit board. Achieved characteristics include −10 dB impedance bandwidth at the desired bands, circular polarization axial ratioAR<3 dB, front to back ratio of 6 dB, gain value of about 4 dBi, and average radiation efficiency of 60%. The paper includes comparison between simulation and experimental results.


2021 ◽  
Author(s):  
SACHIN KUMAR YADAV ◽  
Amanpreet Kaur ◽  
Rajesh Khanna

Abstract A circularly polarized hollow dielectric resonator antenna (CPHDRA) is designed for X-band applications. Rectangular dielectric resonator (RDR) is used as a radiator element, fed by a quarter-wave transformer (QWT) feedline. By performance of the RDR antenna, an air cylindrical rod structure is extracted from RDR to enhance the gain and impedance bandwidth. Two parasitic strips are placed on the top of the RDR to achieve circular polarization with reported ≤ 3-dB axial ratio (AR) bandwidth for X-band applications. In this article, UWB antenna covers range from 2.74 to 10.4GHz by using asymmetrical defective ground structure (DGS). In near field of the dielectric resonator, three different radiating modes namely HE11δ, HE21δ, HE23δ, and HE32δ are at 4.4, 6, 8.8, and 9.9 GHz. For the generation of circular polarization (CP), two orthogonal modes are generated at 8.8 and 9.9 GHz as per XZ and YZ planes. It has reported 23.8 % (8 to 10.1 GHz) of 3-dB AR bandwidth. The simulated and measured impedance bandwidths are 118.46 % and 121.12 % along with a peak gain of 6.55 dB without the use of a metallic reflector. By using a metallic reflector suspended in the bottom side of the substrate with a distance of 13.1mm is reported along with the peak gain of 9.8 dBi.


Frequenz ◽  
2018 ◽  
Vol 72 (7-8) ◽  
pp. 333-341 ◽  
Author(s):  
Qiang Chen ◽  
Hou Zhang ◽  
Lu-chun Yang ◽  
Bin-bin Li ◽  
Xue-liang Min

Abstract A design with wideband and circularly polarized radiation antenna from an open-slot antenna has been demonstrated in this paper. The proposed antenna, which consists of an open slot and an inverted-L strip feeding, provides a large bandwidth, which completely cover the Wimax (3.3–3.8 GHz) and WLAN (2.4–2.48 GHz) bands. The open slot is formed by an modified ground plane with a slit cut and monofilar spiral stubs employed, which fed by an asymmetrical inverted-L strip feedline using a via. As demonstrated, the CP operation was significantly improved by loading monofilar spiral stubs connected to the asymmetric feedline by means of a via. A parametric study of the key parameters is made and the mechanism for circular polarization is described. After optimization, the impedance bandwidth is approximately 3.78 GHz (2.12 to 5.9 GHz) and the 3 dB axial ratio bandwidth is approximately 2.75 GHz (2.2 to 4.95 GHz), which represent fractional bandwidths of approximately 94.3 % and 76.9 %, respectively.


2015 ◽  
Vol 8 (3) ◽  
pp. 651-659 ◽  
Author(s):  
Eric Arnaud ◽  
Luc Duchesne ◽  
Kevin Elis ◽  
Jamil Fouany ◽  
Thierry Monediere ◽  
...  

This paper presents a tradeoff between isoflux pattern quality and X-band antenna compactness for nanosatellite applications. Having an isoflux radiation and a circular polarization (CP) generally causes a large antenna size which is incompatible for these applications. A new design of an antenna is done with the following maximum antenna dimensions: a diameter of 90 mm and a height of 20 mm above the nanosatellite platform. The isoflux pattern is slightly degraded while a good CP and realized gain are kept. The structure is a compact choke horn. It presents an axial ratio lower than 3 dB and a RG close to 0 dB over a 400 MHz bandwidth (8.0–8.4 GHz). It has been realized and successfully measured.


2021 ◽  
Author(s):  
Rohit Kumar Saini

Abstract A microstrip line –fed broadband dual circular polarized, two port printed monopole antenna is presented. The antenna consists of a ground plane with arrow shaped stub at the corner and a pair of inverted L-shaped feed lines. The 3dB axial ratio bandwidth of the antenna is about 58%(1.7GHz-3.1GHz) in which the return loss and isolation are better than 10dB and 12dB respectively. A parametric study of proposed antenna’s geometric parameters is given for understanding of the antenna performance. The realize gain, reflection coefficient (S 11 ) and transmission coefficient (S 21 ) are higher than 1, 10 and 12dB respectively within the entire axial ratio bandwidth (ARBW).


2019 ◽  
Vol 8 (4) ◽  
pp. 2133-2139

A miniaturized microstrip-fed, wideband and circularly polarized L-shaped slot antenna is designed for ultra-wideband applications. To realize L-shaped slot antenna with wide impedance bandwidth, a stub of size 10.7 mm2 is added to a rectangular shaped slot of the ground plane. The position of the feedline is optimized to attain wide circular polarization bandwidth. The proposed antenna size is very small i.e., 25×25 mm2 . A prototype of the design is fabricated and measured. The axial ratio bandwidth (ARBW< 3 dB) of 2.2 GHz (from 6.2 GHz to 8.4 GHz) and the impedance bandwidth (S11<-10 dB) of 7.4 GHz (from 2.5 GHz to 9.9 GHz) is achieved by the proposed design. Moreover, the antenna achieves a stable radiation pattern and a gain of more than 2.8 dBi over the complete ARBW. The advantages of the structure are miniaturized design, having wide impedance bandwidth, and broad ARBW


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3899 ◽  
Author(s):  
Amir Altaf ◽  
Munkyo Seo

In this paper, a triple-band dual-sense circularly polarized (CP) hybrid dielectric resonator antenna is proposed. A modified hexagonal dielectric resonator (DR) is top-loaded with a square microstrip ring (SMR). A vertical-tapered-strip connected to a 50- Ω microstrip line is used to excite the proposed antenna. It is found that the lower and central CP bands correspond to left-handed circular polarization and are produced by the TM 11 and TE 111 modes of the SMR and modified hexagonal DR, respectively. The upper CP band is formed by the combination of the quasi-TM 21 mode of the SMR and quasi-TE 111 mode of the DR that exhibits right-handed circular polarization. The measurement results of the fabricated prototype show triple-band response for |S 11 | < −10 dB with impedance bandwidths (IBWs) of 17.4% (1.75–2.03 GHz), 28.13% (2.23–2.96 GHz), and 2.97% (3.65–3.76 GHz) in the lower, central, and upper bands, respectively. The measured 3 dB axial ratio bandwidths lying within −10 dB IBWs are 3.69% (1.86–1.93 GHz), 5.46% (2.67–2.82 GHz), and 2.15% (3.68–3.76 GHz) along with the peak gains of 5 dBic, 5.28 dBic, and 2.36 dBic in the lower, central, and upper bands, respectively.


Sign in / Sign up

Export Citation Format

Share Document