pyramidal horn
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 34)

H-INDEX

9
(FIVE YEARS 1)

2022 ◽  
Vol 17 (01) ◽  
pp. C01023
Author(s):  
A.Y. Yashin ◽  
V.V. Bulanin ◽  
V.K. Gusev ◽  
V.B. Minaev ◽  
A.V. Petrov ◽  
...  

Abstract Doppler backscattering (DBS) was successfully previously used on the Globus-M tokamak. The diagnostic was utilised in the form of either a single-frequency or a four-frequency dual homodyne system. It was used primarily for the study of zonal flows, filaments and Alfvén eigenmodes. These phenomena are worth being studied both on the periphery and in the core region of the plasma in a tokamak. For this specific reason two multifrequency DBS systems were installed on the upgraded Globus-M2 tokamak. The first four-frequency system with dual homodyne detection had already been used on the Globus-M tokamak and has lower probing frequencies which provide measurements from the periphery plasma. The second and new six-frequency DBS system was installed with a non-linear transmission line that was adapted to generate probing signals at frequencies 50, 55, 60, 65, 70 and 75 GHz. In general, the range of probing frequencies corresponds to the region of critical plasma densities from 5 × 1018 to 7 × 1019 m−3 at normal incidence. The pyramidal horn antennas are located inside the vacuum vessel with a special cardan-like rotator outside the camera so as to tilt antennas in the toroidal and poloidal directions. A previously developed code was applied to simulate 3D raytracing for all frequency channels. Calculations were carried out for different angles of incidence and for different electron density distributions in order to investigate the possibilities of the implementation of radial and poloidal correlation Doppler reflectometry. Examples of the DBS system application for study of plasma properties in the Globus-M2 tokamak are presented.


Author(s):  
Wei Han ◽  
Hong-Wei Deng ◽  
Yong-Jiu Zhao ◽  
Yang-Kun Han

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3321
Author(s):  
Diogo Helena ◽  
Amélia Ramos ◽  
Tiago Varum ◽  
João N. Matos

With the rise of 5G, Internet of Things (IoT), and networks operating in the mmWave frequencies, a huge growth of connected sensors will be a reality, and high gain antennas will be desired to compensate for the propagation issues, and with low cost, characteristics inherent to metallic radiating structures. 3D printing technology is a possible solution in this way, as it can print an object with high precision at a reduced cost. This paper presents different methods to fabricate typical metal antennas using 3D printing technology. These techniques were applied as an example to pyramidal horn antennas designed for a central frequency of 28 GHz. Two techniques were used to metallize a structure that was printed with polylactic acid (PLA), one with copper tape and other with a conductive spray-paint. A third method consists of printing an antenna completely using a conductive filament. All prototypes combine good results with low production cost. The antenna printed with the conductive filament achieved a better gain than the other structures and showed a larger bandwidth. The analysis recognizes the vast potential of these 3D-printed structures for IoT applications, as an alternative to producing conventional commercial antennas.


Author(s):  
Charalampos Stoumpos ◽  
Jean-Philippe Fraysse ◽  
George Goussetis ◽  
Cebrian Garcia Gonzalez ◽  
Ronan Sauleau ◽  
...  

Author(s):  
Nesem Keskin ◽  
Sinan Aksimsek ◽  
Nurhan Turker Tokan

Abstract In this article, we present a simple, low-cost solution for the gain enhancement of a conventional pyramidal horn antenna using additive manufacturing. A flat, metamaterial lens consisting of three-layer metallic grid wire is implemented at the aperture of the horn. The lens is separated into two regions; namely epsilon-positive and epsilon-near-zero (ENZ) regions. The structure of the ENZ region is constructed accounting the variation of relative permittivity in the metamaterial. By the phase compensation property imparted by the metamaterial lens, more focused beams are obtained. The simulated and measured results clearly demonstrate that the metamaterial lens enhances the gain over an ultra-wide frequency band (10–18 GHz) compared to the conventional horn with the same physical size. A simple fabrication process using a 3D printer is introduced, and has been successfully applied. This result represents a remarkable achievement in this field, and may enable a comprehensive solution for satellite and radar systems as a high gain, compact, light-weighted, broadband radiator.


Sign in / Sign up

Export Citation Format

Share Document