scholarly journals Design of a Road Friendly SAS System for Heavy-Duty Vehicles Based on a Fuzzy-Hybrid-ADD and GH-Control Strategy

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Jing Zhao ◽  
Pak Kin Wong ◽  
Zhengchao Xie ◽  
Xinbo Ma ◽  
Caiyang Wei

Semiactive suspension (SAS) system has been widely used for its outstanding performance in offering competent ride quality, road holding, and handling capacity. However, the road friendliness is also one of the crucial factors that should be attached in the design of the SAS system for heavy-duty vehicles. In this study, a fuzzy controlled hybrid-acceleration driven damper (ADD) and ground hook- (GH-) control strategy is proposed for SAS system of heavy-duty vehicles. Firstly, a quarter-vehicle model with SAS system is constructed. Then, aiming to improve the ride quality and road friendliness, a hybrid-ADD and GH-control strategy is proposed under the coordination of the fuzzy controller. Numerical results show that the ride quality and road friendliness of the SAS system with the proposed control strategy outperform those with traditional hybrid-sky hook and ground hook-control strategy. It is also verified that the proposed strategy is superior to the sole ADD approach and sole ground hook approach in improving the vehicle overall performance.

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Zhengchao Xie ◽  
Pak Kin Wong ◽  
Jing Zhao ◽  
Tao Xu ◽  
Ka In Wong ◽  
...  

Semi-active air suspension is increasingly used on heavy-duty vehicles due to its capabilities of consuming less power and low cost and providing better ride quality. In this study, a new low cost but effective approach, fuzzy-wheelbase preview controller with wavelet denoising filter (FPW), is developed for semi-active air suspension system. A semi-active suspension system with a rolling lobe air spring is firstly modeled and a novel front axle vertical acceleration-based road prediction model is constructed. By adopting a sensor on the front axle, the road prediction model can predict more reliable road information for the rear wheel. After filtering useless signal noise, the proposed FPW can generate a noise-insensitive control damping force. Simulation results show that the ride quality, the road holding, the handling capability, the road friendliness, and the comprehensive performance of the semi-active air suspension with FPW outperform those with the traditional active suspension with PID-wheelbase preview controller (APP). It can also be seen that, with the addition of the wavelet filter, the impact of sensor noise on the suspension performance can be minimized.


1964 ◽  
Author(s):  
John M. Clark ◽  
Ross F. Meriwether

Author(s):  
Hongpeng Zheng ◽  
Yulong Lei ◽  
Pengxiang Song

With the development of the road industry, heavy-duty vehicles now require additional braking power to fulfill their braking requirements. Auxiliary braking systems, which include a hydraulic retarder and an engine brake, can provide additional braking force in nonemergency braking conditions. A water medium retarder is a new type of hydraulic retarder that can convert the kinetic energy of a vehicle into the thermal energy of coolant. This study introduces a novel auxiliary braking system involving a water medium retarder and an engine brake for heavy-duty vehicles. The specific forces of heavy-duty vehicles and the auxiliary braking system are established. The control logic of the novel auxiliary braking system is assigned, and a main controller is designed to dynamically manage the entire braking process. The main controller includes controllers A and B, which handles the engine brake and water medium retarder, respectively. The heavy-duty vehicles dynamic system model is created using MATLAB/Simulink. Upon performance testing, simulation results show that the designed main controller can effectively and rapidly manage the auxiliary braking system, thus satisfying the braking requirements in any nonemergency braking condition. Even when the slope of a road changes, the main controller can extract dynamical forces as well as acceleration parameters and fulfill the braking requirements of vehicles.


2015 ◽  
Vol 740 ◽  
pp. 180-185
Author(s):  
Qing Nian Wang ◽  
Shi Xin Song ◽  
Shao Kun Li ◽  
Shi Qi Fan ◽  
Si Lun Peng

The electro-mechanical braking system of In-Wheel-Motor vehicle is analyzed by applying vehicle braking stability theory. Considering the properties of composite lectro-mechanical braking system, a regenerative braking system control strategy with ABS function for In-Wheel-Motor vehicle is proposed. In the strategy, the ABS function is achieved by adjust the motor torque. With using the new strategy, simulations are conducted on an in-wheel-motor vehicle model, and the road adhesion coefficient in the simulation is 0.2 and 0.8 respectively. The result shows that the control strategy proposed enhances the braking stability of In-Wheel-Motor vehicle.


2012 ◽  
Vol 226-228 ◽  
pp. 584-589 ◽  
Author(s):  
Gong Yu Pan ◽  
Fang Qiang Fan

Based on the semi-active suspension system with variable stiffness and damping, the full vehicle model was established in Adams/Car software, which included front suspension and rear suspension with variable stiffness and damping, steering system, car body and tires model. The variable universe fuzzy controller of semi-active suspension was designed according to variable universe fuzzy theory, which was compared with the traditional fuzzy controller. The co-simulation model was built by Matlab/Simulink and Adams/Car software. Then the model was simulated and analyzed in the inputs of random road and roof road. The results of the co-simulation show that, compared with the full vehicle model with passive suspension, the full vehicle model with variable stiffness and damping semi-active suspension effectively reduced the vibration of car body and improved the vehicle ride quality, and the variable universe fuzzy controller is better than the traditional fuzzy controller in decreasing vibration.


Author(s):  
Yongjie Lu ◽  
Yinfeng Han ◽  
Weihong Huang ◽  
Yang Wang

Aiming at the rollover risk of heavy-duty vehicles, an adaptive rollover prediction and control algorithm based on identification of multiple road adhesion coefficients is proposed, and the control effect has been verified by hardware-in-the-loop experiments. Based on the establishment of a 3 DOFs (Degree of freedom) vehicle dynamic model, the roll angle of the vehicle dynamic model is estimated in real time by using Kalman filter algorithm. In order to ensure the real-time operation of anti-rollover control strategy for multi-body dynamic heavy vehicle model, a sliding mode variable structure controller for anti-rollover of vehicles is designed to determine the optimal yaw moment. Specially, the recognition algorithm of road surface type is integrated into the control rollover algorithm. When the control system with road recognition algorithm recognizes whether the vehicle is in danger of rollover, it can not only adjust the state of the vehicle, but also shorten the time to reach the stable area of the vehicle's lateral load transfer rate by about 2 s. In order to further improve its adaptability and control accuracy, a Hardware-in-loop test platform for three-axis heavy-duty vehicles is built to verify the proposed anti-rollover control strategy. The results prove that the proposed control strategy can accurately predict the rollover risk and control the rollover in time.


2019 ◽  
Author(s):  
Yulong Lei ◽  
Pengxiang Song ◽  
Yao Fu ◽  
Yuhai Wang ◽  
Yuchen Zhang

Author(s):  
Mehmet Emin Mumcuoglu ◽  
Gokhan Alcan ◽  
Mustafa Unel ◽  
Onur Cicek ◽  
Mehmet Mutluergil ◽  
...  

2020 ◽  
Vol 53 (2) ◽  
pp. 13850-13854
Author(s):  
P. Polverino ◽  
I. Arsie ◽  
C. Pianese

Sign in / Sign up

Export Citation Format

Share Document