scholarly journals Pilot Contamination Mitigation via a Novel Time-Shift Pilot Scheme in Large-Scale Multicell Multiuser MIMO Systems

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Zhangkai Luo ◽  
Huali Wang ◽  
Wanghan Lv

We propose a novel time-shift pilot scheme to mitigate the pilot contamination in large-scale multicell multiuser MIMO (LS-MIMO) systems. In the proposed scheme, the length of the uplink training pilot sequence is equal to the cell number; that is to say, the same pilot sequence is used within a cell, while for different cells, pilot sequences are mutually orthogonal. Moreover, users within a cell transmit the same pilot sequence in a time-shift manner during the channel estimation stage and in this way all user terminals’ channel state information can be estimated without contamination. The asymptotic channel orthogonality is studied in the LS-MIMO system, with which the mutual interference among cells caused by data and pilot sequences can be cancelled with the successive interference cancellation (SIC) method. We explore the superiority of the proposed scheme in channel coefficient estimation, uplink data detection, and downlink data transmission steps. Theoretical analysis and simulation results demonstrate that the proposed time-shift pilot design can alleviate the pilot contamination problem and improve the performance of the considered system significantly compared with the popular orthogonal pilots.

2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Qifeng Zou ◽  
Xuezhi Tan ◽  
Mei Liu ◽  
Lin Ma

The emerging large-scale/massive multi-input multioutput (MIMO) system combined with orthogonal frequency division multiplexing (OFDM) is considered a key technology for its advantage of improving the spectral efficiency. In this paper, we introduce an iterative detection algorithm for uplink large-scale multiuser MIMO-OFDM communication systems. We design a Main-Branch structure iterative turbo detector using the Approximate Message Passing algorithm simplified by linear approximation (AMP-LA) and using the Mean Square Error (MSE) criterion to calculate the correlation coefficients between main detector and branch detector for the given iteration. The complexity of our method is compared with other detection algorithms. The simulation results show that our scheme can achieve better performance than the conventional detection methods and have the acceptable complexity.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1552
Author(s):  
Tongzhou Han ◽  
Danfeng Zhao

In centralized massive multiple-input multiple-output (MIMO) systems, the channel hardening phenomenon can occur, in which the channel behaves as almost fully deterministic as the number of antennas increases. Nevertheless, in a cell-free massive MIMO system, the channel is less deterministic. In this paper, we propose using instantaneous channel state information (CSI) instead of statistical CSI to obtain the power control coefficient in cell-free massive MIMO. Access points (APs) and user equipment (UE) have sufficient time to obtain instantaneous CSI in a slowly time-varying channel environment. We derive the achievable downlink rate under instantaneous CSI for frequency division duplex (FDD) cell-free massive MIMO systems and apply the results to the power control coefficients. For FDD systems, quantized channel coefficients are proposed to reduce feedback overhead. The simulation results show that the spectral efficiency performance when using instantaneous CSI is approximately three times higher than that achieved using statistical CSI.


Author(s):  
Simon Wissam Tarbouche ◽  
Abdel-Nasser Assimi

Generalized frequency division multiplexing (GFDM) is a prominent candidate to be used by the mobile Fifth Generation (5G) physical layer. Nevertheless, the integration of GFDM with Spatial Multiplexing (SM) MIMO system is essential to fulfill the data rate requirements. SM detection of MIMO-GFDM becomes a more challenging topic because of ICI and ISI due to the non-orthogonal nature of GFDM, along with IAI. In this article, the authors propose a system that combines the Offset-Quadrature Amplitude Modulation (OQAM) with GFDM to mitigate self-induced interference, by using a simple Matched Filter (MF) detector and minimum additional processing at the receiver. Simulation results show a considerable achieved improvement in BER by the proposed OQAM/GFDM compared to QAM/GFDM when using MMSE-based Ordered Successive Interference Cancellation (OSIC) detector. Furthermore, this system is unaffected by the roll-off factor variations of used pulse-shaping filters.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ke Li ◽  
Xiaoqin Song ◽  
M. Omair Ahmad ◽  
M. N. S. Swamy

Massive MIMO is a promising technology to improve both the spectrum efficiency and the energy efficiency. The key problem that impacts the throughput of a massive MIMO system is the pilot contamination due to the nonorthogonality of the pilot sequences in different cells. Conventional channel estimation schemes cannot mitigate this problem effectively, and the computational complexity is increasingly becoming larger in views of the large number of antennas employed in a massive MIMO system. Furthermore, the channel estimation is always carried out with some ideal assumptions such as the complete knowledge of large-scale fading. In this paper, a new channel estimation scheme is proposed by utilizing interference cancellation and joint processing. Highly interfering users in neighboring cells are identified based on the estimation of large-scale fading and then included in the joint channel processing; this achieves a compromise between the effectiveness and efficiency of the channel estimation at a reasonable computational cost, and leads to an improvement in the overall system performance. Simulation results are provided to demonstrate the effectiveness of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document