scholarly journals The Downlink Performance for Cell-Free Massive MIMO with Instantaneous CSI in Slowly Time-Varying Channels

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1552
Author(s):  
Tongzhou Han ◽  
Danfeng Zhao

In centralized massive multiple-input multiple-output (MIMO) systems, the channel hardening phenomenon can occur, in which the channel behaves as almost fully deterministic as the number of antennas increases. Nevertheless, in a cell-free massive MIMO system, the channel is less deterministic. In this paper, we propose using instantaneous channel state information (CSI) instead of statistical CSI to obtain the power control coefficient in cell-free massive MIMO. Access points (APs) and user equipment (UE) have sufficient time to obtain instantaneous CSI in a slowly time-varying channel environment. We derive the achievable downlink rate under instantaneous CSI for frequency division duplex (FDD) cell-free massive MIMO systems and apply the results to the power control coefficients. For FDD systems, quantized channel coefficients are proposed to reduce feedback overhead. The simulation results show that the spectral efficiency performance when using instantaneous CSI is approximately three times higher than that achieved using statistical CSI.

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6213
Author(s):  
Muhammad Irshad Zahoor ◽  
Zheng Dou ◽  
Syed Bilal Hussain Shah ◽  
Imran Ullah Khan ◽  
Sikander Ayub ◽  
...  

Due to large spectral efficiency and low power consumption, the Massive Multiple-Input-Multiple-Output (MIMO) became a promising technology for the 5G system. However, pilot contamination (PC) limits the performance of massive MIMO systems. Therefore, two pilot scheduling schemes (i.e., Fractional Pilot Reuse (FPR) and asynchronous fractional pilot scheduling scheme (AFPS)) are proposed, which significantly mitigated the PC in the uplink time division duplex (TDD) massive MIMO system. In the FPR scheme, all the users are distributed into the central cell and edge cell users depending upon their signal to interference plus noise ratio (SINR). Further, the capacity of central and edge users is derived in terms of sum-rate, and the ideal number of the pilot is calculated which significantly maximized the sum rate. In the proposed AFPS scheme, the users are grouped into central users and edge users depending upon the interference they receive. The central users are assigned the same set of pilots because these users are less affected by interference, while the edge users are assigned the orthogonal pilots because these users are severely affected by interference. Consequently, the pilot overhead is reduced and inter-cell interference (ICI) is minimized. Further, results verify that the proposed schemes outperform the previous proposed traditional schemes, in terms of improved sum rates.


Author(s):  
Robin Chataut ◽  
Robert Akl

The global bandwidth shortage in the wireless communication sector has motivated the study and exploration of wireless access technology known as massive Multiple-Input Multiple-Output (MIMO). Massive MIMO is one of the key enabling technology for next-generation networks, which groups together antennas at both transmitter and the receiver to provide high spectral and energy efficiency using relatively simple processing. Obtaining a better understating of the massive MIMO system to overcome the fundamental issues such as pilot contamination, channel estimation, precoding, user scheduling, energy efficiency, and signal detection is vital for the successful deployment of 5G and beyond networks. Some of the recent trends in massive MIMO are terahertz communication, ultra massive MIMO (UM-MIMO), visible light communication (VLC), machine learning, and deep learning. 


Author(s):  
Yujiao He ◽  
Jianing Zhao ◽  
Lijuan Tao ◽  
Fuyu Hou ◽  
Wei Jia

This paper proposes an improved port modulation (PM) method which can be applied to the multiuser (MU) massive multiple-input multiple-output (MIMO) system. The precoding process of the improved PM can be divided into two parts: port precoding and MU precoding. The methods of the precoding and detection are provided and the performance of the proposed improved PM is simulated and analyzed. Simulation results show that the proposed improved PM system can achieve a satisfying bit error rate (BER) performance with a cutdown channel state information (CSI) feedback.


Author(s):  
Thanh-Binh Nguyen ◽  
Minh-Tuan Le ◽  
Vu-Duc Ngo ◽  
Tien-Dong Nguyen ◽  
Huy-Dung Han

In Multiple Input Multiple Output (MIMO) systems, the complexities of detectors depend on the size of the channel matrix. In Massive MIMO systems, detection complexity becomes remarkably higher because the dimensions of the channel matrix get much larger. In order to recover the signals in the up-link of a Massive MIMO system at reduced complexities, we first divide the system into two sub-systems. After that, we apply the Minimum Mean Square Error (MMSE) and Bell Laboratory Layer Space Time (BLAST) detectors to each subsystem, resulting in the so-called MMSE-GD and BLAST-GD detectors, respectively. To further enhance the BER performance of Massive MIMO systems under the high-load conditions, we propose two additional detectors, called MMSE-IGD and BLAST-IGD by respectively applying the conventional MMSE and BLAST on the sub-systems in an iterative manner. It is shown via computer simulation and analytical results that the proposed detectors enable the system to achieve not only higher BER performance but also low detection complexities as compared to the conventional linear detectors. Moreover, the MMSE-IGD and BLAST-IGD can significantly improve BER performance of Massive MIMO systems.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ajay Kumar Yadav ◽  
Pritam Keshari Sahoo ◽  
Yogendra Kumar Prajapati

Abstract Orthogonal frequency division multiplexing (OFDM) based massive multiuser (MU) multiple input multiple output (MIMO) system is popularly known as high peak-to-average power ratio (PAPR) issue. The OFDM-based massive MIMO system exhibits large number of antennas at Base Station (BS) due to the use of large number of high-power amplifiers (HPA). High PAPR causes HPAs to work in a nonlinear region, and hardware cost of nonlinear HPAs are very high and also power inefficient. Hence, to tackle this problem, this manuscript suggests a novel scheme based on the joint MU precoding and PAPR minimization (PP) expressed as a convex optimization problem solved by steepest gradient descent (GD) with μ-law companding approach. Therefore, we develop a new scheme mentioned to as MU-PP-GDs with μ-law companding to minimize PAPR by compressing and enlarging of massive MIMO OFDM signals simultaneously. At CCDF = 10−3, the proposed scheme (MU-PP-GDs with μ-law companding for Iterations = 100) minimizes the PAPR to 3.70 dB which is better than that of MU-PP-GDs, (iteration = 100) as shown in simulation results.


Author(s):  
В.Б. КРЕЙНДЕЛИН ◽  
М.В. ГОЛУБЕВ

Совместный с прекодингом автовыбор антенн на приемной и передающей стороне - одно из перспективных направлений исследований для реализации технологий Multiple Transmission and Reception Points (Multi-TRP, множество точек передачи и приема) в системах со многими передающими и приемными антеннами Massive MIMO (Multiple-Input-Multiple-Output), которые активно развиваются в стандарте 5G. Проанализированы законодательные ограничения, влияющие на применимость технологий Massive MIMO, и специфика реализации разрабатываемого алгоритма в миллиметровомдиапа -зоне длин волн. Рассмотрены алгоритмы формирования матриц автовыбора антенн как на передающей, так и на приемной стороне. Сформулирована строгая математическая постановка задачи для двух критериев работы алгоритма: максимизация взаимной информации и минимизация среднеквадратичной ошибки. Joint precoding and antenna selection both on transmitter and receiver sides is one of the promising research areas for evolving toward the Multiple Transmission and Reception Points (Multi-TRP) concept in Massive MIMO systems. This technology is under active development in the coming 5G 3GPP releases. We analyze legal restrictions for the implementation of 5G Massive MIMO technologies in Russia and the specifics of the implementation of the developed algorithm in the millimeter wavelength range. Algorithms of antenna auto-selection matrices formation on both transmitting and receiving sides are considered. Two criteria are used for joint antenna selection and precoding: maximizing mutual information and minimizing mean square error.


Author(s):  
Elsadig Saeid ◽  
Varun Jeoti ◽  
Brahim Belhaouari Samir

Future Wireless Networks are expected to adopt multi-user multiple input multiple output (MU-MIMO) systems whose performance is maximized by making use of precoding at the transmitter. This chapter describes the recent advances in precoding design for MU-MIMO and introduces a new technique to improve the precoder performance. Without claiming to be comprehensive, the chapter gives deep introduction on basic MIMO techniques covering the basics of single user multiple input multiple output (SU-MIMO) links, its capacity, various transmission strategies, SU-MIMO link precoding, and MIMO receiver structures. After the introduction, MU-MIMO system model is defined and maximum achievable rate regions for both MU-MIMO broadcast and MU-MIMO multiple access channels are explained. It is followed by critical literature review on linear precoding design for MU-MIMO broadcast channel. This paves the way for introducing an improved technique of precoding design that is followed by its performance evaluation.


Information ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 165 ◽  
Author(s):  
Xiaoqing Zhao ◽  
Zhengquan Li ◽  
Song Xing ◽  
Yang Liu ◽  
Qiong Wu ◽  
...  

Massive multiple-input-multiple-output (MIMO) is one of the key technologies in the fifth generation (5G) cellular communication systems. For uplink massive MIMO systems, the typical linear detection such as minimum mean square error (MMSE) presents a near-optimal performance. Due to the required direct matrix inverse, however, the MMSE detection algorithm becomes computationally very expensive, especially when the number of users is large. For achieving the high detection accuracy as well as reducing the computational complexity in massive MIMO systems, we propose an improved Jacobi iterative algorithm by accelerating the convergence rate in the signal detection process.Specifically, the steepest descent (SD) method is utilized to achieve an efficient searching direction. Then, the whole-correction method is applied to update the iterative process. As the result, the fast convergence and the low computationally complexity of the proposed Jacobi-based algorithm are obtained and proved. Simulation results also demonstrate that the proposed algorithm performs better than the conventional algorithms in terms of the bit error rate (BER) and achieves a near-optimal detection accuracy as the typical MMSE detector, but utilizing a small number of iterations.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6255
Author(s):  
Taehyoung Kim ◽  
Sangjoon Park

In this paper, we propose a novel statistical beamforming (SBF) method called the partial-nulling-based SBF (PN-SBF) to serve a number of users that are undergoing distinct degrees of spatial channel correlations in massive multiple-input multiple-output (MIMO) systems. We consider a massive MIMO system with two user groups. The first group experiences a low spatial channel correlation, whereas the second group has a high spatial channel correlation, which can happen in massive MIMO systems that are based on fifth-generation networks. By analyzing the statistical signal-to-interference-plus-noise ratio, it can be observed that the statistical beamforming vector for the low-correlation group should be designed as the orthogonal complement for the space spanned by the aggregated channel covariance matrices of the high-correlation group. Meanwhile, the spatial degrees of freedom for the high-correlation group should be preserved without cancelling the interference to the low-correlation group. Accordingly, a group-common pre-beamforming matrix is applied to the low-correlation group to cancel the interference to the high-correlation group. In addition, to deal with the intra-group interference in each group, the post-beamforming vector for each group is designed in the manner of maximizing the signal-to-leakage-and-noise ratio, which yields additional performance improvements for the PN-SBF. The simulation results verify that the proposed PN-SBF outperforms the conventional SBF schemes in terms of the ergodic sum rate for the massive MIMO systems with distinct spatial correlations, without the rate ceiling effect in the high signal-to-noise ratio region unlike conventional SBF schemes.


2018 ◽  
Vol 39 (2) ◽  
pp. 107
Author(s):  
Victor Croisfelt Rodrigues ◽  
Taufik Abrão

The demand for higher data rates can be satisfied by the spectral efficiency (SE) improvement offered by Massive multiple-input multiple-output (M-MIMO) systems. However, the pilot contamination remains as a fundamental issue to obtain the paramount SE in such systems. This propitiated the research of several methods to mitigate pilot contamination. One of these procedures is based on the coordination of the cells, culminating in proposals with multiple pilot training phases. This paper aims to expand the results of the original paper, whereby the concepts of large pilot training phases were offered. The evaluation of such method was conducted through more comprehensible numerical results, in which a large number of antennas were assumed and more rigorous SE expressions were used. The channel estimation approaches relying on multiple pilot training phases were considered cumbersome for implementation and an uninteresting solution to overcome pilot contamination; contradicting the results presented in the genuine paper.


Sign in / Sign up

Export Citation Format

Share Document