scholarly journals Length Variation Effect of the Impulse Response Model of a Secondary Path in Embedded Control

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Young-Sup Lee ◽  
Yunseon Choi ◽  
Jeakwan Kim

This study presents theoretical and experimental investigation on the length variation effect of the impulse response function (IRF) for the secondary path model in active noise control using an embedded control board. A narrowband sweep noise was the disturbance for control in a duct with the length of 1800 mm. The IRF model incorporated into an adaptive feedforward filtered-x LMS (FxLMS) algorithm was then analyzed in the variation of its length in terms of the mean square error, computation complexity, stability requirement, and attenuation performance before and after control. The FxLMS algorithm with various IRF lengths was implemented in a dSPACE DS1104 embedded control board for the real-time control. Finally the most reasonable IRF length, considering the computation complexity and performance, can be determined through the systematic investigation. The results in this study can be used for practical active noise control systems.

2013 ◽  
Vol 631-632 ◽  
pp. 1172-1176
Author(s):  
Yong Wei Ma ◽  
Xin Ke Gou ◽  
Xian Jun Du ◽  
Chong Yu Ren

The feed-forward adaptive active noise control (AANC) system is presented. Firstly, the hardware project of the system is brought forward, by selecting TMS320C5509 DSP as the controller. Then, using the mixed language, the active noise real-time control system is realized, based on the FXLMS algorithm. It’s proved that a good noise cancellation is achieved by the experiment.


2012 ◽  
Vol 152-154 ◽  
pp. 1891-1898
Author(s):  
Hyeon Seok Jang ◽  
Young Min Kim ◽  
Saehan Kim ◽  
Taeoh Lee ◽  
Kwon Soon Lee

In many countries, the use of the KTX high-speed rail has been generalized of late. Therefore, its customers who initially pursued only convenience and speed have begun pursuing quality services such as comfort and stability. Thus, the importance of reducing the noise in the high-speed rail is increasing. The active noise is best choice to reduce noise because of being able to actively reduce the ambient noise coming from the environmental-factor changes. But it’s too hard in a three-dimensional closed-space sound field such as the interior of a high-speed rail. In this study, we used multichannel(2x2) FXLMS algorithm for applying ANC system in KTX. In detail, after measuring the noise inside KTX during its runs in South Korea, multichannel active noise control was simulated to determine the extent to which it can reduce the noise inside KTX. Simulation was done using a multichannel FXLMS algorithm for reducing the actual noise inside KTX and the noise reduction in the open-space section of KTX was compared with that in the tunnel section, and the active-noise-control performances in the low-frequency (below 500 Hz) region were compared.


2019 ◽  
Vol 29 (03) ◽  
pp. 1950014
Author(s):  
Diego Mendez ◽  
David Arevalo ◽  
Diego Patino ◽  
Eduardo Gerlein ◽  
Ricardo Quintana

Filtered-x Least Mean Squares (FxLMS) is an algorithm commonly used for Active Noise Control (ANC) systems in order to cancel undesired acoustic waves from a sound source. There is a small number of hardware designs reported in the literature, that in turn only use one reference signal, one error signal and one output control signal. In this paper, it is proposed a 3-dimensional hardware-based version of the widely used FxLMS algorithm, using one reference microphone, 18 error microphones, one output and a FIR filter of 400[Formula: see text] order. The FxLMS algorithm was implemented in a Xilinx Artix 7 FPGA running at 25 MHz, which allowed to update the filter coefficients in 32.44[Formula: see text] s. The main idea behind this work is to propose a pipelined parallelized architecture to achieve processing times faster than real time for the filter coefficients update. The main contribution of this work is not the ANC technique itself, but rather the proposed hardware implementation that utilizes integer arithmetic, which provided an acceptable error when benchmarked with a software implementation. This parallel system allows a scalable implementation as an advantage of using FPGA without compromising the computational cost and, consequently, the latency.


Sign in / Sign up

Export Citation Format

Share Document