scholarly journals Vitamin D Effects on Osteoblastic Differentiation of Mesenchymal Stem Cells from Dental Tissues

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Francesca Posa ◽  
Adriana Di Benedetto ◽  
Graziana Colaianni ◽  
Elisabetta A. Cavalcanti-Adam ◽  
Giacomina Brunetti ◽  
...  

1α,25-Dihydroxyvitamin D3(1,25(OH)2D3), the active metabolite of vitamin D (Vit D), increases intestinal absorption of calcium and phosphate, maintaining a correct balance of bone remodeling. Vit D has an anabolic effect on the skeletal system and is key in promoting osteoblastic differentiation of human Mesenchymal Stem Cells (hMSCs) from bone marrow. MSCs can be also isolated from the immature form of the tooth, the dental bud: Dental Bud Stem Cells (DBSCs) are adult stem cells that can effectively undergo osteoblastic differentiation. In this work we investigated the effect of Vit D on DBSCs differentiation into osteoblasts. Our data demonstrate that DBSCs, cultured in an opportune osteogenic medium, differentiate into osteoblast-like cells; Vit D treatment stimulates their osteoblastic features, increasing the expression of typical markers of osteoblastogenesis like RUNX2 and Collagen I (Coll I) and, in a more important way, determining a higher production of mineralized matrix nodules.

2021 ◽  
Vol 35 (12) ◽  
Author(s):  
Kojiro Matsushita ◽  
Chiharu Nakahara ◽  
Shun Kimura ◽  
Naoya Sakamoto ◽  
Satoshi Ii ◽  
...  

2015 ◽  
Vol 88 (4) ◽  
pp. 479-482 ◽  
Author(s):  
Monica Angela Maxim ◽  
Olga Soritau ◽  
Mihaela Baciut ◽  
Simion Bran ◽  
Grigore Baciut

Mesenchymal stem cells (MSCs) are adult stem cells that have the capacity of rising multiple cell types.A rich source of mesenchymal stem cells is represented by the dental tissues: the periodontal ligament, the dental pulp, the apical papilla, the dental follicle and the deciduous teeth.The aim of this review is to characterize the main dental- derived mesenchymal stem cell population, and to show their important role in tissue regeneration based on their properties : the multi-potency, the high proliferation rate, the differentiation in multiple cell lineages, the high cell viability and the positive expression for mesenchymal cell markers.Tissue regeneration or de novo' formation of craniofacial structures is the future of regenerative medicine, offering a solution for congenital malformations, traumas and other diseases. 


2006 ◽  
Vol 191 (3) ◽  
pp. 715-725 ◽  
Author(s):  
Ana María Pino ◽  
Juan Manuel Rodríguez ◽  
Susana Ríos ◽  
Pablo Astudillo ◽  
Laura Leiva ◽  
...  

Human mesenchymal stem cells (hMSCs) are multipotent cells present in bone marrow, which differentiate into osteoblasts and adipocytes, among other lineages. Oestrogens play a critical role in bone metabolism; its action may affect the adipocyte to osteoblast ratio in the bone marrow. In hMSCs, oestrogens are synthesized from C19 steroids by the enzyme aromatase cytochrome P450. In this study, we assessed whether aromatase enzymatic activity varied through early osteogenic (OS) and adipogenic (AD) differentiation. Also, we studied the effect of leptin and 1,25 dihydroxyvitamin D3 (1,25(OH)2D3) on aromatase cell activity. Finally, we analysed whether conditions that modify oestrogen generation by cells affected hMSCs differentiation. For these purposes, hMSCs derived from post-menopausal women (65–86 years old) were cultured under basal, OS or AD conditions, in the presence or the absence of leptin and 1,25(OH)2D3. Aromatase activity was measured by the tritiated water release assay and by direct measurement of steroids synthesized from 3H-labelled androstenedione or testosterone. Our results showed that different OS and AD patterns of aromatase activity developed during the first period of differentiation (up to 7 days). A massive and sharp surge of aromatase activity at 24 h characterized early OS differentiation, while increased but constant aromatase activity was increased through adipogenesis. Both leptin and vitamin D increased aromatase activity during osteogenesis, but not during adipogenesis; finally, we showed that favourable aromatase substrates concentration restrained MSCs adipogenesis but improved osteogenesis. Thus, it could be inferred that a high and early increase of local oestrogen concentration in hMSCs affects their commitment either restraining AD or facilitating OS differentiation, or both.


Sign in / Sign up

Export Citation Format

Share Document