scholarly journals Water-soluble factors eluated from surface pre-reacted glass-ionomer filler promote osteoblastic differentiation of human mesenchymal stem cells

Author(s):  
Akira Nemoto ◽  
Naoyuki Chosa ◽  
Seiko Kyakumoto ◽  
Seiji Yokota ◽  
Masaharu Kamo ◽  
...  
2021 ◽  
Vol 35 (12) ◽  
Author(s):  
Kojiro Matsushita ◽  
Chiharu Nakahara ◽  
Shun Kimura ◽  
Naoya Sakamoto ◽  
Satoshi Ii ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Satoshi Fujita ◽  
Harue Shimizu ◽  
Shin-ichiro Suye

Effective differentiation of mesenchymal stem cells (MSCs) is required for clinical applications. To control MSC differentiation, induction media containing different types of soluble factors have been used to date; however, it remains challenging to obtain a uniformly differentiated population of an appropriate quality for clinical application by this approach. We attempted to develop nanofiber scaffolds for effective MSC differentiation by mimicking anisotropy of the extracellular matrix structure, to assess whether differentiation of these cells can be controlled by using geometrically different scaffolds. We evaluated MSC differentiation on aligned and random nanofibers, fabricated by electrospinning. We found that induction of MSCs into adipocytes was markedly more inhibited on random nanofibers than on aligned nanofibers. In addition, adipoinduction on aligned nanofibers was also inhibited in the presence of mixed adipoinduction and osteoinduction medium, although osteoinduction was not affected by a change in scaffold geometry. Thus, we have achieved localized control over the direction of differentiation through changes in the alignment of the scaffold even in the presence of a mixed medium. These findings indicate that precise control of MSC differentiation can be attained by using scaffolds with different geometry, rather than by the conventional use of soluble factors in the medium.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4964-4964
Author(s):  
Dominique Thierry 9 ◽  
Y. Z. Zhang 1 ◽  
A. Chapel 2 ◽  
M. Benshidoum 3 ◽  
C. Mazurier 4 ◽  
...  

Abstract Mesenchymal stem cells (MSCs), have been shown to elicit immunosuppressive effect on allogeneic lymphocyte response. However, MSCs are heterogeneous and data on the inhibitory abilities of different MSC subsets are lacking. In the present study, we selected Stro-1+ cells from human bone marrow and evaluated the inhibitory capability of this MSC subset in mixed lymphocyte reactions (MLRs) or in mitogen stimulation asssays, in comparison to that of Stro-1− cells. To evaluate the two MSC subsets for immunomodulation in vitro, we added 1,000–30,000 Stro-1+ or Stro-1− cells to MLR at the beginning of the experiment. When comparing the inhibitory effects of the two subsets, PBLs proliferation was significantly more inhibited by Stro-1+MSCs (11.0%–63.7%) than by stro-1−MSCs (35.5%-106%) (P<0.01). Furthermore, as few as 1,000 Stro-1+ MSC could inhibit lymphocyte proliferation more effectively than 10 times more (10,000 cells) Stro-1−cells. As it was observed with the mixed lymphocyte reaction, suppression of the response to the mitogen also occurred in a dose dependent fashion, but to a lesser extent with the Stro-1−cells (25.5%–80.1% vs 7.5%–38.4% in Stro-1+cells) (P<0.05). To investigate whether the difference of suppressive effect that we observed between Stro-1+ and Stro-1− cells, still exist when MSC subsets are separated physically from PBL, we performed MLR in the upper chamber of a transwell and we seeded the lower chamber either with Stro-1+ or Stro-1− cells. The inhibitory effect of Stro-1+ cells was significantly more profound than the one observed when Stro-1− cells were used in the Transwell culture system (p<0.05) (Figure 3), demonstrating that one or several soluble factors was involved in production of different suppressive effects. Cytokine and chemokine genes, IL-10, TGF-β1, SDF-1, SCF and IL-6 expression were evaluated in both MSC subsets by quantitative RT-PCR. Low levels of IL-6, SCF, SDF-1 were observed in Stro-1+, which induced a fold increase around 1 (0,96 ± 0,32; 0,96 ± 0,24; 0,96 ± 0,24), indicating that there is no signifiant difference of these genes expression between the two MSC subsets. However, we observed in Stro-1+ a decreased gene expression for IL-10 (0,24 fold ± 0,59; p <0,05) and for TGF b1 (0,43 fold ± 0,32; p <0,05). This finding suggested that the candidate T-cell inhibitory factors TGF b1, IL-10, which are lower expressed in Stro-1+ cells, are not responsible for the more profound inhibition of immunoreactivity by Stro-1+ cells. We show here that significant differences do exist within these two subsets. Stro-1+ cells inhibit lymphocyte proliferation significantly more profoundly than Stro-1−cells. The difference is in part mediated by soluble factors, but not IL-10 and TGF-β1. These results point to the notion that Stro-1+ cells can elicit more powerful immunosuppressive ability and a pre-selection of Stro-1+MSC for clinical use may be advisable. These findings suggest that pre-selection of MSC before clinical use might produce more effective immunosuppression in different therapeutic applications, especially in clinics for the prevention of graft versus host disease (GVHD).


2015 ◽  
Vol 15 (10) ◽  
pp. 7966-7970 ◽  
Author(s):  
Linhua Jin ◽  
Jong Ho Lee ◽  
Oh Seong Jin ◽  
Yong Cheol Shin ◽  
Min Jeong Kim ◽  
...  

Osteoprogenitor cells play a significant role in the growth or repair of bones, and have great potential as cell sources for regenerative medicine and bone tissue engineering, but control of their specific differentiation into bone cells remains a challenge. Graphene-based nanomaterials are attractive candidates for biomedical applications as substrates for stem cell (SC) differentiation, scaffolds in tissue engineering, and components of implant devices owing to their biocompatible, transferable and implantable properties. This study examined the enhanced osteogenic differentiation of human mesenchymal stem cells (hMSCs) by reduced graphene oxide (rGO) nanoparticles (NPs), and rGO NPs was prepared by reducing graphene oxide (GO) with a hydrazine treatment followed by annealing in argon and hydrogen. The cytotoxicity profile of each particle was examined using a water-soluble tetrazolium-8 (WST-8) assay. At different time-points, a WST-8 assay, alkaline phosphatase (ALP) activity assay and alizarin red S (ARS) staining were used to determine the effects of rGO NPs on proliferation, differentiation and mineralization, respectively. The results suggest that graphene-based materials have potential as a platform for stem cells culture and biomedicalapplications.


Sign in / Sign up

Export Citation Format

Share Document