scholarly journals Fracture Mechanics Models for Brittle Failure of Bottom Rails due to Uplift in Timber Frame Shear Walls

2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
Joergen L. Jensen ◽  
Giuseppe Caprolu ◽  
Ulf Arne Girhammar

In partially anchored timber frame shear walls, hold-down devices are not provided; hence the uplift forces are transferred by the fasteners of the sheathing-to-framing joints into the bottom rail and via anchor bolts from the bottom rail into the foundation. Since the force in the anchor bolts and the sheathing-to-framing joints do not act in the same vertical plane, the bottom rail is subjected to tensile stresses perpendicular to the grain and splitting of the bottom rail may occur. This paper presents simple analytical models based on fracture mechanics for the analysis of such bottom rails. An existing model is reviewed and several alternative models are derived and compared qualitatively and with experimental data. It is concluded that several of the fracture mechanics models lead to failure load predictions which seem in sufficiently good agreement with the experimental results to justify their application in practical design.

Author(s):  
Hamid Reza Majidi ◽  
Seyed Mohammad Javad Razavi ◽  
Filippo Berto

In the current study, the failure behavior of retrofitted steel structures was studied experimentally and theoretically with steel/CFRP double strap joints (DSJs) under quasi-static tensile loading. A series of DSJs with different bonding lengths are also considered and examined to experimentally assess the effective bond length. To predict the failure load values of the tested specimens, a new stress-based criterion, namely the point stress (PS) criterion is proposed. Although some theoretical predictive modelling for the strength between steel/CFRP joints under various loading conditions has been presented, in this work by using the new proposed approach, one can calculate rapidly and conveniently the failure loads of the steel/CFRP specimens. Furthermore, to assess the validity of the new proposed criterion, further experimental data on steel/CFRP DSJs available in the open literature are predicted using the PS criterion. Finally, it was found that a good agreement exists between the experimental results and the theoretical predictions based on the PS criterion.


Buildings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 162 ◽  
Author(s):  
Cristiano Loss ◽  
Stefano Pacchioli ◽  
Andrea Polastri ◽  
Daniele Casagrande ◽  
Luca Pozza ◽  
...  

Changes to building codes that enable use of materials such as cross-laminated timber (CLT) in mid- and high-rise construction are facilitating sustainable urban development in various parts of the world. Keys to this are the transition to multi-performance-based design approaches along with fewer limitations on heights or the number of storeys in superstructures constructed from combustible materials. Architects and engineers have increased freedom to apply new design and construction concepts and methods, as well as to combine timber with other structural materials. They also have started to develop wall arrangements that optimise interior space layouts and take advantage of the unique characteristics of CLT. This paper discusses the seismic response of multi-story buildings braced with a CLT core and perimeter shear walls anchored to foundations and floor platforms using modern high-capacity angle brackets and hold-downs, or X-Rad connectors. Linear dynamic finite element (FE) models of seismic responses of superstructures of various heights are presented, based on experimentally determined characteristics of wall anchor connections. Particular attention is given to fundamental vibration periods, base shear and uplift forces on walls, as well as inter-story drift. Discussion of FE model results focuses on structural engineering implications and advantages of using CLT to create shear walls, with emphasis on how choice of wall anchoring connections impacts the possible number of storeys and configurations of superstructures. Employing CLT shear walls with X-Rad or other types of high capacity anchoring connections makes possible the creation of building superstructures having eight and potentially more storeys even in high seismicity regions. However, it is important to emphasise that proper selection of suitable arrangements of shear walls for CLT buildings depends on accurate representation of the semi-rigid behaviors of anchoring connections. The linear dynamic analyses presented here demonstrates the need during engineering seismic design practices to avoid use of FE or other design models which do not explicitly incorporate connection flexibilities while estimating parameters like fundamental periods, base shear and uplift forces, as well as inter-story drift.


2011 ◽  
Vol 20 (2) ◽  
Author(s):  
T. Sepp ◽  
E. Tempel ◽  
M. Gramann ◽  
P. Nurmi ◽  
M. Haupt

AbstractThe SDSS galaxy catalog is one of the best databases for galaxy distribution studies. The SDSS DR8 data is used to construct the galaxy cluster catalog. We construct the clusters from the calculated luminosity density field and identify denser regions. Around these peak regions we construct galaxy clusters. Another interesting question in cosmology is how observable galaxy structures are connected to underlying dark matter distribution. To study this we compare the SDSS DR7 galaxy group catalog with galaxy groups obtained from the semi-analytical Millennium N-Body simulation. Specifically, we compare the group richness, virial radius, maximum separation and velocity dispersion distributions and find a relatively good agreement between the mock catalog and observations. This strongly supports the idea that the dark matter distribution and galaxies in the semi-analytical models and observations are very closely linked.


2009 ◽  
Vol 1182 ◽  
Author(s):  
Ciaran P Moore ◽  
Richard John Blaikie ◽  
Matthew D Arnold

AbstractSpatial-frequency transfer functions are regularly used to model the imaging performance of near-field �superlens� systems. However, these do not account for interactions between the object that is being imaged and the superlens itself. As the imaging in these systems is in the near field, such interactions are important to consider if accurate performance estimates are to be obtained. We present here a simple analytical modification that can be made to the transfer function to account for near-field interactions for objects consisting of small apertures in otherwise-continuous metal screens. The modified transfer functions are evaluated by comparison with full-field finite-element simulations for representative single-layer and multi-layer silver superlenses, and good agreement is found.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Mehmet Inel ◽  
Hayri Baytan Ozmen ◽  
Bayram Tanik Cayci

Determining the dynamic properties of structures is important for understanding their seismic behaviour. Ambient vibration signal measurement is one of the approaches used to determine the period of structures. Advantages of this method include the possibility of taking real-time records and presenting nondestructive and rapid solutions. In this study, natural vibration periods are calculated by taking ambient vibration signal records from 40 buildings. The height of the building, infill wall effect, presence of seismic retrofit, and presence of damage are taken into consideration, and their effects on natural vibration periods are investigated. Moreover, the results are compared with the analytical methods to reveal the differences. A significant correlation between the period and height of the building is observed. It is seen that the natural vibration periods of the buildings decrease by 7% to 30% (15% on average) due to infill wall contribution. However, the efficiency of infill walls decreases as the building height increases. Another significant result is that adding shear walls substantially decreases the vibration period values by 23% to 33% with respect to the shear wall ratio. When the analytical estimates and measured building period results are compared, it is seen that analytical models have closer period estimates before infill walls are implemented. The limited data in scope of the study suggest that significant differences may present in the analytical and measured periods of the buildings due to infill wall contributions.


Sign in / Sign up

Export Citation Format

Share Document