scholarly journals Two New Approximations for Variable-Order Fractional Derivatives

2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Ruilian Du ◽  
Zongqi Liang

We introduced a parameter σ(t) which was related to α(t); then two numerical schemes for variable-order Caputo fractional derivatives were derived; the second-order numerical approximation to variable-order fractional derivatives α(t)∈(0,1) and 3-α(t)-order approximation for α(t)∈(1,2) are established. For the given parameter σ(t), the error estimations of formulas were proven, which were higher than some recently derived schemes. Finally, some numerical examples with exact solutions were studied to demonstrate the theoretical analysis and verify the efficiency of the proposed methods.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
MohammadHossein Derakhshan

In this article, a numerical technique based on the Chebyshev cardinal functions (CCFs) and the Lagrange multiplier technique for the numerical approximation of the variable-order fractional integrodifferential equations are shown. The variable-order fractional derivative is considered in the sense of regularized Hilfer-Prabhakar and Hilfer-Prabhakar fractional derivatives. To solve the problem, first, we obtain the operational matrix of the regularized Hilfer-Prabhakar and Hilfer-Prabhakar fractional derivatives of CCFs. Then, this matrix and collocation method are used to reduce the solution of the nonlinear coupled variable-order fractional integrodifferential equations to a system of algebraic equations which is technically simpler for handling. Convergence and error analysis are examined. Finally, some examples are given to test the proposed numerical method to illustrate its accuracy and efficiency.


2016 ◽  
Vol 26 (3) ◽  
pp. 429-435 ◽  
Author(s):  
Roman I. Parovik

Abstract The paper deals with the model of variable-order nonlinear hereditary oscillator based on a numerical finite-difference scheme. Numerical experiments have been carried out to evaluate the stability and convergence of the difference scheme. It is argued that the approximation, stability and convergence are of the first order, while the scheme is stable and converges to the exact solution.


Author(s):  
Behrouz Parsa Moghaddam ◽  
José António Tenreiro Machado

AbstractA new computational approach for approximating of variable-order fractional derivatives is proposed. The technique is based on piecewise cubic spline interpolation. The method is extended to a class of nonlinear variable-order fractional integro-differential equation with weakly singular kernels. Illustrative examples are discussed, demonstrating the performance of the numerical scheme.


Sign in / Sign up

Export Citation Format

Share Document