scholarly journals Minimized Low-Profile Wideband Antennas Using High Impedance Surface

2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Yizhu Shen

This paper proposes minimized low-profile wideband antenna by employing high impedance surface (HIS), for wireless application scenarios at radio frequency, microwave, and even terahertz. To validate this concept with low cost and easy measurement, two prototypes at radio frequency are fabricated and tested. Firstly, antenna with dielectric-substrate reflector is proposed and analyzed and 4 × 6 HIS array is employed to minimize the antenna size to 0.57λL×0.86λL×0.078λL, while maintaining antenna performances such as bandwidth, gain, and directive radiation. Secondly, a substrate-less HIS is proposed to improve the antenna bandwidth from 36% to 52% and also reduces the antenna weight by 72%.

Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3809
Author(s):  
Mohammed M. Bait-Suwailam ◽  
Isidoro I. Labiano ◽  
Akram Alomainy

In this paper, impedance matching enhancement of a grounded wearable low-profile loop antenna is investigated using a high-impedance surface (HIS) structure. The wearable loop antenna along with the HIS structure is maintained low-profile, making it a suitable candidate for healthcare applications. The paper starts with investigating, both numerically and experimentally, the effects of several textile parameters on the performance of the wearable loop antenna. The application of impedance enhancement of wearable grounded loop antenna with HIS structure is then demonstrated. Numerical full-wave simulations are presented and validated with measured results. Unlike the grounded wearable loop antenna alone with its degraded performance, the wearable loop antenna with HIS structure showed better matching performance improvement at the 2.45 GHz-band. The computed overall far-field properties of the wearable loop antenna with HIS structure shows good performance, with a maximum gain of 6.19 dBi. The effects of bending the wearable loop antenna structure with and without HIS structure as well as when in close proximity to a modeled human arm are also investigated, where good performance was achieved for the case of the wearable antenna with the HIS structure.


2018 ◽  
Vol 7 (3.29) ◽  
pp. 57
Author(s):  
Rangarao. Orugu ◽  
Srilatha. Gundapaneni ◽  
N Maryleena ◽  
A K.Chaithanya Varma

In this paper, we design a concentric circular patch antenna excited by microstrip feed and operates at 5.4269 GHz and 6.9419 GHz. After designing the antenna, we would like to tune the frequency without changing antenna size. For that purpose, we use high impedance surface structure to tune the antenna at two different frequencies. A simple mushroom like structure is used as high impedance surface. We will analyze antenna parameters like return loss, gain, directivity, radiation patterns, efficiency, proposed antenna with and without high impedance surfaces and compare the results.  


2012 ◽  
Vol 60 (1) ◽  
pp. 51-62 ◽  
Author(s):  
Andrea Vallecchi ◽  
Javier R. De Luis ◽  
Filippo Capolino ◽  
Franco De Flaviis

Sign in / Sign up

Export Citation Format

Share Document