scholarly journals Observational and Simulative Study of a Local Severe Precipitation Event Caused by a Cold Vortex over Northeast China

2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Ying Liu ◽  
Zhaoming Liang ◽  
Yupeng Li

A severe precipitation event around Changchun-Yongji in Jilin Province, China, during 27–29 July 2010 was investigated, with a focus on the comparative analysis of 2 heavy precipitation episodes. This was done using NCEP gridded analysis data, intensive surface observations, and radar and satellite measurements. The Weather Research and Forecast (WRF) model was used to simulate the precipitation process and explore mechanisms for the development and dissipation of the severe precipitation event. Precipitation in the first stage was induced by the convergence of northwesterly winds at the rear of the cold vortex and southwesterly winds that reached the rainfall region. However, in the second stage, because of the blockage caused by Changbai Mountain, winds at the bottom of the cold vortex turned from the northwest to the northeast. These winds strongly converged with the southwesterly winds and continuously triggered new convective clouds, which were associated with cold centers at the surface. The intensity of the cold center modulated the strength of the convective cells and resulting precipitation quantity. Furthermore, the local terrain features and direction of the motion of the airflows were critical in triggering convection.

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1727
Author(s):  
Valerio Capecchi ◽  
Andrea Antonini ◽  
Riccardo Benedetti ◽  
Luca Fibbi ◽  
Samantha Melani ◽  
...  

During the night between 9 and 10 September 2017, multiple flash floods associated with a heavy-precipitation event affected the town of Livorno, located in Tuscany, Italy. Accumulated precipitation exceeding 200 mm in two hours was recorded. This rainfall intensity is associated with a return period of higher than 200 years. As a consequence, all the largest streams of the Livorno municipality flooded several areas of the town. We used the limited-area weather research and forecasting (WRF) model, in a convection-permitting setup, to reconstruct the extreme event leading to the flash floods. We evaluated possible forecasting improvements emerging from the assimilation of local ground stations and X- and S-band radar data into the WRF, using the configuration operational at the meteorological center of Tuscany region (LaMMA) at the time of the event. Simulations were verified against weather station observations, through an innovative method aimed at disentangling the positioning and intensity errors of precipitation forecasts. A more accurate description of the low-level flows and a better assessment of the atmospheric water vapor field showed how the assimilation of radar data can improve quantitative precipitation forecasts.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1177
Author(s):  
Diana Arteaga ◽  
Céline Planche ◽  
Christina Kagkara ◽  
Wolfram Wobrock ◽  
Sandra Banson ◽  
...  

The Mediterranean region is frequently affected in autumn by heavy precipitation that causes flash-floods or landslides leading to important material damage and casualties. Within the framework of the international HyMeX program (HYdrological cycle in Mediterranean EXperiment), this study aims to evaluate the capabilities of two models, WRF (Weather Research and Forecasting) and DESCAM (DEtailed SCAvenging Model), which use two different representations of the microphysics to reproduce the observed atmospheric properties (thermodynamics, wind fields, radar reflectivities and precipitation features) of the HyMeX-IOP7a intense precipitating event (26 September 2012). The DESCAM model, which uses a bin resolved representation of the microphysics, shows results comparable to the observations for the precipitation field at the surface. On the contrary, the simulations made with the WRF model using a bulk representation of the microphysics (either the Thompson scheme or the Morrison scheme), commonly employed in NWP models, reproduce neither the intensity nor the distribution of the observed precipitation—the rain amount is overestimated and the most intense cell is shifted to the East. The different simulation results show that the divergence in the surface precipitation features seems to be due to different mechanisms involved in the onset of the precipitating system: the convective system is triggered by the topography of the Cévennes mountains (i.e., south-eastern part of the Massif Central) in DESCAM and by a low-level flux convergence in WRF. A sensitivity study indicates that the microphysics properties have impacted the thermodynamics and dynamics fields inducing the low-level wind convergence simulated with WRF for this HyMeX event.


2016 ◽  
Vol 38 ◽  
pp. 491
Author(s):  
Lissette Guzmán Rodríguez ◽  
Vagner Anabor ◽  
Franciano Scremin Puhales ◽  
Everson Dal Piva

In this paper was  used the  kernel density estimation (KDE),  a nonparametric method to estimate the probability density function of a random variable, to obtain a probabilistic  precipitation forecast, from an ensemble prediction with the  WRF model. The nine members of the prediction were obtained by varying the convective parameterization of the model, for a heavy precipitation event in southern Brazil. Evaluating the results, the estimated probabilities  obtained for periods of 3 and 24 hours, and various thresholds of precipitation, were compared with the estimated precipitation of the TRMM, without showing a clear morphological correspondence between them. For  accumulated in 24 hours, it was possible to compare the specific values of the observations of INMET, finding better coherence between the observations and the predicted probabilities. Skill scores were calculated from contingency tables,  for different ranks of probabilities, and the forecast of heavy rain had higher proportion correct in all ranks of probabilities, and forecasted precipitation with probability of 75%, for any threshold, did not produce false alarms. Furthermore, the precipitation of lower intensity with marginal probability was over-forecasted, showing also higher index of false alarms.


Author(s):  
Storm Dunlop

Convective clouds may range from relatively innocuous showers to major supercell systems accompanied by dramatic conditions. ‘Severe and unusual weather events’ explains how convective cells generate in cumulonimbus clouds and how thunderstorms and associated lightning develop. Convective clouds may cluster together resulting in vigorous circulation and heavy precipitation. Even more active and dramatic systems are supercells that create tornadoes. These arise when a deep pool of unstable air is accompanied by a strong increase in wind speed with height, together with directional wind shear. Tropical cyclones are closed, non-frontal, low-pressure systems of high winds arising some 5–10° away from the equator, where the Coriolis acceleration promotes their overall rotation.


2009 ◽  
Vol 137 (11) ◽  
pp. 3699-3716 ◽  
Author(s):  
Yongqing Wang ◽  
Yuqing Wang ◽  
Hironori Fudeyasu

Abstract When Typhoon Songda (2004) was located southeast of Okinawa over the western North Pacific during 2–4 September 2004, a heavy rainfall event occurred over southern central Japan and its adjacent seas, more than 1200 km from the typhoon center. The Advanced Research version of the Weather Research and Forecast (WRF-ARW) model was used to investigate the possible remote effects of Typhoon Songda on this heavy precipitation event in Japan. The National Centers for Environmental Prediction (NCEP) global final (FNL) analysis was used to provide both the initial and lateral boundary conditions for the WRF model. The model was initialized at 1800 UTC 2 September and integrated until 1800 UTC 6 September 2004, during which Songda was a supertyphoon. Two primary numerical experiments were performed. In the control experiment, a bogus vortex was inserted into the FNL analysis to enhance the initial storm intensity such that the model typhoon had an intensity that was similar to that observed at the initial time. In the no-typhoon experiment, the vortex associated with Typhoon Songda in the FNL analysis was removed by a smoothing algorithm such that the typhoon signal did not appear at the initial time. As verified against various observations, the control experiment captured reasonably well the evolution of the storm and the spatial distribution and evolution of the precipitation, whereas the remote precipitation in Japan was largely suppressed in the no-typhoon experiment, indicting the significant far-reaching effects of Typhoon Songda. Songda enhanced the remote precipitation in Japan mainly through northward moisture transport into the preconditioned precipitation region by its outer circulation. The orographic forcing of the central mountains in Japan played a small role compared with Typhoon Songda in this extreme precipitation event.


2007 ◽  
Vol 22 (1) ◽  
pp. 125-144 ◽  
Author(s):  
Peter Knippertz ◽  
Jonathan E. Martin

Abstract In this study the term moisture conveyor belt (MCB) is defined as an elongated band of enhanced poleward water vapor fluxes (WVFs) above the PBL that is rooted in the Tropics. This new terminology is illustrated through an exemplary detailed case study of an MCB over the northeastern Pacific during 9–13 November 2003 that provides the moisture for a significant precipitation event in the dry southwestern United States. The analysis of the involved moisture transports and dynamics comprises both Eulerian and Lagrangian approaches, and is based upon output from a simulation with the University of Wisconsin-Nonhydrostatic Modeling System, as well as analysis data, surface observations, and satellite images. The formation of the MCB is related to a quasi-stationary upper-level cutoff low (COL) resulting from a wave-breaking event over the North Pacific. A pronounced upper-tropospheric baroclinic zone and a strong, inertially unstable subtropical jet (STJ) are found to the east of the COL, where at later stages an elongated tropical cloud plume developed in association with a marked flare-up of ITCZ convection. Part of the extratropical air that subsides to the west of the COL becomes involved in this convection; another part feeds the so-called dry slot at the base of the COL. The actual MCB consists of midlevel trajectories that curve anticyclonically away from the moist tropical easterlies and cause a northeastward-directed WVF maximum at around 700 hPa over the subtropical northeast Pacific and a marked humidity gradient toward the subsided extratropical air. At late stages, frontogenetic circulations lead to WVF convergence involving air from the midlevel subtropical troposphere. At the surface, cyclogenesis and thermal contrasts are weak, and northeasterly trade winds prevail, which clearly distinguishes this MCB from a classical extratropical warm conveyor belt. Other important differences are the high elevation of the WVF maximum, as well as the quasi-horizontal track and origin above the PBL of most moist trajectories. Three precipitation regions with different influence factors can be distinguished. 1) Close to the COL center, moist tropical air is overrun by the dry slot, resulting in convective instability and extreme hail in the Los Angeles, California, area. 2) To the north and east, quasigeostrophic forcing and midlevel warm frontogenesis generate ascent, where the northern branch of the MCB circulates around the COL. 3) Along the anticyclonic shear side of the STJ, convection forms within potentially unstable MCB air benefiting from the inertial instability at the outflow level. It is suggested that this set of circumstances is quite similar to those that conspire to produce heavy precipitation events in subtropical West Africa.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Kim Whitehall ◽  
Sen Chiao ◽  
Margarette Mayers-Als

Localized convection in Barbados accounts for hazardous conditions and a significant percentage of the island’s annual rainfall. The feature results in rainfall accumulations exceeding 50 mm in 3 hours or less, over isolated locations. Weather Research and Forecasting model (WRF) simulations are conducted for a rapid convective initiated and heavy precipitation event of 26 August 2008 over Barbados. The simulation results from the 1 km grid resolution domain depict that the shallow topography on the island plays a significant role in enhancing convective activity under weak synoptically disturbed conditions. The model results also demonstrate that the driving forces for the development of deep convective clouds include low-level moisture convergence that form as a result of the temperature differential between the land and the ocean and forced low-level uplift as a result of the blocking by the topography. The high-resolution WRF simulations demonstrate its capability to accurately capture the low-level flow over the island, as well as the orientation of the divergence and convergence patterns throughout the depth of the atmosphere. These results are heartening to use the WRF as a resource for studying deep convection in Barbados for disaster managers and water resource managers.


Author(s):  
Valerio Capecchi ◽  
Andrea Antonini ◽  
Riccardo Benedetti ◽  
Luca Fibbi ◽  
Samantha Melani ◽  
...  

During the night between 9 and 10 September 2017, multiple flash floods associated to a heavy-precipitation event affected the town of Livorno, located in Tuscany, Italy. Accumulated precipitation exceeding 200 mm in two hours, associated with a return period higher than 200 years, caused all the largest streams of the Livorno municipality to flood several areas of the town. We used the limited-area Weather Research and Forecasting (WRF) model, in a convection-permitting setup, to reconstruct the extreme event leading to the flash floods. We evaluated possible forecasting improvements emerging from the assimilation of local ground stations and X- and S-band radar data into the WRF, using the configuration operational at the meteorological center of Tuscany region (LaMMA) at the time of the event. Simulations were verified against weather station observations, through an innovative method aimed at disentangling the positioning and intensity errors of precipitation forecasts. By providing more accurate descriptions of the low-level flow and a better assessment of the atmospheric water vapour, the results demonstrate that assimilating radar data improved the quantitative precipitation forecasts.


Atmosphere ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 329 ◽  
Author(s):  
Pedro Bolgiani ◽  
Sergio Fernández-González ◽  
Francisco Valero ◽  
Andrés Merino ◽  
Eduardo García-Ortega ◽  
...  

Deep convection is a threat to many human activities, with a great impact on aviation safety. On 7 July 2017, a widespread torrential precipitation event (associated with a cut-off low at mid-levels) was registered in the vicinity of Madrid, causing serious flight disruptions. During this type of episode, accurate short-term forecasts are key to minimizing risks to aviation. The aim of this research is to improve early warning systems by obtaining the best WRF model setup. In this paper, the aforementioned event was simulated. Various model configurations were produced using four different physics parameterizations, 3-km and 1-km domain resolutions, and 0.25° and 1° initial condition resolutions. Simulations were validated using data from 17 rain gauge stations. Two validation indices are proposed, accounting for the temporal behaviour of the model. Results show significant differences between microphysics parameterizations. Validation of domain resolution shows that improvement from 3 to 1 km is negligible. Interestingly, the 0.25° resolution for initial conditions produced poor results compared with 1°. This may be linked to a timing error, because precipitation was simulated further east than observed. The use of ensembles generated by combining different WRF model configurations produced reliable precipitation estimates.


2021 ◽  
Vol 69 (5) ◽  
pp. 1979-1995
Author(s):  
Mohammad Amin Maddah ◽  
Ali Mohammad Akhoond-Ali ◽  
Farshad Ahmadi ◽  
Parvin Ghafarian ◽  
Igor Nikolayevich Rusin

Sign in / Sign up

Export Citation Format

Share Document