scholarly journals Chaos Control and Synchronization via Switched Output Control Strategy

Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Runzi Luo ◽  
Haipeng Su ◽  
Yanhui Zeng

This paper investigates the control and synchronization of a class of chaotic systems with switched output which is assumed to be switched between the first and the second state variables of chaotic system. Some novel and yet simple criteria for the control and synchronization of a class of chaotic systems are proposed via the switched output. The generalized Lorenz chaotic system is taken as an example to show the feasibility and efficiency of theoretical results.

2005 ◽  
Vol 11 (8) ◽  
pp. 1007-1024 ◽  
Author(s):  
S. Bowong ◽  
F. M. Moukam Kakmeni ◽  
C. Tchawoua

This paper deals with the control and synchronization of chaotic systems. First, a control strategy is developed to control a class of uncertain nonlinear systems. The proposed strategy is an input-output control scheme, which comprises an uncertainty estimator and an exponential linearizing feedback. Computer simulations are provided to illustrate the operation of the designed synchronization scheme.


2017 ◽  
Vol 11 (2) ◽  
pp. 96-103 ◽  
Author(s):  
Fernando Serrano ◽  
Josep M. Rossell

AbstractIn this paper a hybrid passivity based and fuzzy type-2 controller for chaotic and hyper-chaotic systems is presented. The proposed control strategy is an appropriate choice to be implemented for the stabilization of chaotic and hyper-chaotic systems due to the energy considerations of the passivity based controller and the flexibility and capability of the fuzzy type-2 controller to deal with uncertainties. As it is known, chaotic systems are those kinds of systems in which one of their Lyapunov exponents is real positive, and hyper-chaotic systems are those kinds of systems in which more than one Lyapunov exponents are real positive. In this article one chaotic Lorentz attractor and one four dimensions hyper-chaotic system are considered to be stabilized with the proposed control strategy. It is proved that both systems are stabilized by the passivity based and fuzzy type-2 controller, in which a control law is designed according to the energy considerations selecting an appropriate storage function to meet the passivity conditions. The fuzzy type-2 controller part is designed in order to behave as a state feedback controller, exploiting the flexibility and the capability to deal with uncertainties. This work begins with the stability analysis of the chaotic Lorentz attractor and a four dimensions hyper-chaotic system. The rest of the paper deals with the design of the proposed control strategy for both systems in order to design an appropriate controller that meets the design requirements. Finally, numerical simulations are done to corroborate the obtained theoretical results.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Runzi Luo ◽  
Haipeng Su

This paper investigates the stabilization and synchronization of a class of fractional-order chaotic systems which are affected by external disturbances. The chaotic systems are assumed that only a single output can be used to design the controller. In order to design the proper controller, some observer systems are proposed. By using the observer systems some sufficient conditions for achieving chaos control and synchronization of fractional-order chaotic systems are derived. Numerical examples are presented by taking the fractional-order generalized Lorenz chaotic system as an example to show the feasibility and validity of the proposed method.


2006 ◽  
Vol 16 (08) ◽  
pp. 2395-2406 ◽  
Author(s):  
XIAOXIN LIAO ◽  
PEI YU

This paper considers the globally exponential synchronization (GES) of the family of Rössler chaotic systems. One pair of the six transmitter-receiver systems is specifically studied, and algebraic criterion for the GES is obtained via proper nonlinear feedback controls. Based on the study of the systems' structures, appropriate Lyapunov functions are constructed for error systems. The method presented in this paper provides a convenient tool in the practical use of chaos control and synchronization. Numerical simulations are provided to demonstrate the theoretical results.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Lidong Liu ◽  
Jinfeng Hu ◽  
Huiyong Li ◽  
Jun Li ◽  
Zishu He ◽  
...  

It is of vital importance to exactly estimate the unknown parameters of chaotic systems in chaos control and synchronization. In this paper, we present a method for estimating one-dimensional discrete chaotic system based on mean value method (MVM). It is proposed by exploiting the ergodic and synchronization features of chaos. It can effectively estimate the parameter value, and it is more exact than MVM. Finally, numerical simulations on Chebyshev map and Tent map show that the proposed method has better performance of parameter estimation than MVM.


1998 ◽  
Vol 08 (12) ◽  
pp. 2433-2438 ◽  
Author(s):  
Tao Yang

In this paper we present a theory for control of chaotic systems using sampled data. The output of the chaotic system is sampled at a given sampling rate and the sampled output is used by a feedback subsystem to construct a control signal, which is held constant by a holding subsystem. Hence, during each control iteration, the control input remains unchanged. Theoretical results on the asymptotic stability of the resulting controlled chaotic systems are presented. Numerical experimental results via Chua's circuit are used to verify the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document