scholarly journals SAR Reduction Using Integration of PIFA and AMC Structure for Pentaband Mobile Terminals

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Jae-Gon Lee ◽  
Jeong-Hae Lee

In this paper, a capacitive grating artificial magnetic conductor (AMC) is presented to reduce the specific absorption rate (SAR) in pentaband mobile terminals. The AMC structure is implemented using a dielectric film with the printed arrays of the metal strips placed at the top and the bottom of the dielectric. It is difficult to design the AMC structure to operate at low (824~960 MHz) and high bands (1710~2170 MHz) simultaneously, because of the limited space available for the antenna. Hence, we have designed the capacitive grating AMC to operate at a high band. Then, we attached a PIFA to the AMC structure to cover low and high bands. As the AMC structure is operated as a perfect electric conductor (PEC) in low band, the radiating branches of the PIFA for the low and high bands should be located on the non-AMC and the AMC structures, respectively. Even though the AMC structure is operated at a high band, the effect against the head could be reduced in the pentaband due to the spreading effect of the electromagnetic (EM) field at lower bands. From measured results, the 1 g SAR in the case of the AMC antenna is significantly lower than that in the case where only the PIFA is present in the pentaband.

2020 ◽  
Vol 12 (9) ◽  
pp. 825-830
Author(s):  
G. Bulla ◽  
A. A. de Salles ◽  
C. Fernández-Rodríguez

AbstractThe design, simulations, and optimized results for a novel low specific absorption rate (SAR) monopole antenna on a single artificial magnetic conductor (AMC) cell are described in this paper. Simulated results show a reduction close to 70% in the 1 g ps SAR for the developed monopole antenna with the AMC in comparison to the monopole antenna without AMC. This allows higher radiation efficiency, battery drain reduction as well as mobile terminal user health risks reduction.


2015 ◽  
Vol 24 (3) ◽  
pp. 729-738 ◽  
Author(s):  
K. Kamardin ◽  
M. K. A. Rahim ◽  
P. S. Hall ◽  
N. A. Samsuri ◽  
M. E. Jalil ◽  
...  

2020 ◽  
pp. 729-734
Author(s):  
Tengfei Hu ◽  
◽  
Zhenni Pan ◽  
Megumi Saitou ◽  
Jiang Liu ◽  
...  

In this paper, a novel triple-band antenna with reflector surface which has the property of both artificial magnetic conductor (AMC) surface and perfect electric conductor (PEC) for WLAN and Sub-6G 5G applications is proposed. The presented antenna is composed of two parts: the AMC surface and the microstrip-fed printed dipole. Baluns are used to excite the dipoles. This antenna design combines the advantages of AMC and PEC. In lower band and middle band, the inserted board works as AMC surface. This AMC surface can help the antenna to achieve unidirectional radiation pattern and low-profile characteristics. While at upper band the antenna works as PEC surface. PEC surface increases the gain of the antenna in upper band. As a result, the proposed antenna can offer an impedance band from 2.39 GHz to 2.63 GHz and from 3.61 GHz to 3.72 GHz and from 5.61 GHz to 5.84 GHz when the S11 is less than - 10dB. Stable radiation patterns with peak gain of 5.6 dBi, 6.5 dBi and 9.6 dBi are obtained in lower band, middle band and upper band, respectively. The proposed antenna can be used for multiband base stations for WLAN and 5G applications.


Author(s):  
Mohamed El Atrash ◽  
Mahmoud A. Abdalla ◽  
Hadia M. Elhennawy

Abstract A compact monopole antenna backed with a 1 × 2 textile-based artificial magnetic conductor (AMC) array is proposed. Textile was mainly selected for the AMC materials according to an investigation that took place between different AMC substrate materials, where it was settled that the textile one displayed the highest antenna gain and efficiency. The monopole antenna and the AMC, distanced apart by 5 mm, combined form the integrated design. It operates at 2.4 GHz, which was particularly selected as the resonant frequency for wirelessly sending the subject's symptoms data via Wi-Fi, with realized gain and total efficiency of 6.76 dBi and 88.4%, respectively, in free space. Separated by 3 mm from the specific anthropomorphic mannequin human hand model, it displays a realized gain and total efficiency of 4.06 dBi and 44.39%, respectively, in a flat condition. Furthermore, it exhibits a specific absorption rate (SAR) of 1.8 W/kg averaged over 10 g of tissue. When bent over the human hand model, it performs well and exhibits a maximum SAR of 0.521 and 0.406 W/kg, averaged over 1 and 10 g of tissues, respectively. As a result of such outcomes, the proposed integrated design can be nominated for wearable hand/wrist and Wi-Fi applications.


Sign in / Sign up

Export Citation Format

Share Document