scholarly journals Adaptive Exponential Synchronization for Stochastic Competitive Neural Networks with Time-Varying Leakage Delays and Reaction-Diffusion Terms

2017 ◽  
Vol 2017 ◽  
pp. 1-22 ◽  
Author(s):  
Zhiqiang Wang ◽  
Lili Wang ◽  
Rui Xu

We study the exponential synchronization problem for a class of stochastic competitive neural networks with different timescales, as well as spatial diffusion, time-varying leakage delays, and discrete and distributed time-varying delays. By introducing several important inequalities and using Lyapunov functional technique, an adaptive feedback controller is designed to realize the exponential synchronization for the proposed competitive neural networks in terms of p-norm. According to the theoretical results obtained in this paper, the influences of the timescale, external stimulus constants, disposable scaling constants, and controller parameters on synchronization are analyzed. Numerical simulations are presented to show the feasibility of the theoretical results.

Author(s):  
Qintao Gan ◽  
Yang Li

In this paper, the exponential synchronization problem for fuzzy Cohen-Grossberg neural networks with time-varying delays, stochastic noise disturbance, and reaction-diffusion effects are investigated. By introducing a novel Lyapunov-Krasovskii functional with the idea of delay partitioning, a periodically intermittent controller is developed to derive sufficient conditions ensuring the addressed neural networks to be exponentially synchronized in terms of p-norm. The results extend and improve upon earlier work. A numerical example is provided to show the effectiveness of the proposed theories.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Biwen Li ◽  
Wenbo Zhou

In this paper, we investigate the exponential synchronization problem of memristive neural networks (MNNs) with discrete and distributed time-varying delays under event-triggered control. An event-triggered controller with the static and dynamic event-triggering conditions is designed to improve the efficiency of resource utilization. By constructing a new Lyapunov function, some sufficient criteria are obtained to realize the exponential synchronization of considered drive-response MNNs under the designed event-triggered controller. In addition, the Zeno behavior will not occur by proving that the event-triggering interval has a positive lower bound under different event-triggering conditions. Finally, a numerical example is provided to prove the validity of our theoretical results.


2014 ◽  
Vol 19 (1) ◽  
pp. 1-25 ◽  
Author(s):  
Qintao Gan ◽  
Hong Zhang ◽  
Jun Dong

This paper deals with the exponential synchronization problem for reaction-diffusion neural networks with mixed time-varying delays and stochastic disturbance. By using stochastic analysis approaches and constructing a novel Lyapunov–Krasovskii functional, a periodically intermittent controller is first proposed to guarantee the exponential synchronization of reaction-diffusion neural networks with mixed time-varying delays and stochastic disturbance in terms of p-norm. The obtained synchronization results are easy to check and improve upon the existing ones. Particularly, the traditional assumptions on control width and time-varying delays are removed in this paper. This paper also presents two illustrative examples and uses simulated results of these examples to show the feasibility and effectiveness of the proposed scheme.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Lihong Yan ◽  
Junmin Li

In this paper, exponential synchronization problem of complex dynamical networks with unknown periodically coupling strengths was investigated. An aperiodically intermittent control synchronization strategy is proposed. Based on Lyapunov exponential stability theory, inequality techniques, and adaptive learning laws design, some sufficient exponential synchronization criteria for complex dynamical network with unknown periodical coupling weights are obtained. The numerical simulation example is presented to illustrate the feasibility of theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Lifu Wang ◽  
Peng Xue ◽  
Zhi Kong ◽  
Xingang Wang

The exponential synchronization problem is investigated for a class of moving agent networks in a two-dimensional space and exhibits time-varying topology structure. Based on the Lyapunov stability theory, adaptive feedback controllers are developed to guarantee the exponential synchronization between each agent node. New criteria are proposed for verifying the locally and globally exponential synchronization of moving agent networks under the constraint of fast switching. In addition, a numerical example, including typical moving agent network with the Rössler system at each agent node, is provided to demonstrate the effectiveness and applicability of the proposed design approach.


Author(s):  
Qing Ding ◽  
Yinfang Song

This paper deals with the exponential synchronization problem of inertial Cohen–Grossberg neural networks with time-varying delays under periodically intermittent control. In light of Lyapunov–Krasovskii functional method and inequality techniques, some sufficient conditions are attained to ensure the exponential synchronization of the master-slave system on the basis of p-norm. Meanwhile, the periodically intermittent control schemes are designed. Finally, in order to verify the effectiveness of theoretical results, some numerical simulations are provided.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Xiaoman Liu ◽  
Haiyang Zhang ◽  
Jun Yang ◽  
Hao Chen

AbstractThis paper focuses on the stochastically exponential synchronization problem for one class of neural networks with time-varying delays (TDs) and Markov jump parameters (MJPs). To derive a tighter bound of reciprocally convex quadratic terms, we provide an improved reciprocally convex combination inequality (RCCI), which includes some existing ones as its particular cases. We construct an eligible stochastic Lyapunov–Krasovskii functional to capture more information about TDs, triggering signals, and MJPs. Based on a well-designed event-triggered control scheme, we derive several novel stability criteria for the underlying systems by employing the new RCCI and other analytical techniques. Finally, we present two numerical examples to show the validity of our methods.


2009 ◽  
Vol 02 (03) ◽  
pp. 377-389
Author(s):  
JIANGHONG BAI ◽  
ZHIDONG TENG ◽  
HAIJUN JIANG

This paper is devoted to global exponential stability of reaction-diffusion time-varying delayed cellular neural networks with Dirichlet boundary conditions. Without assuming the monotonicity and differentiability of activation functions, nor symmetry of synaptic interconnection weights, the authors present some delay independent and easily verifiable sufficient conditions to ensure the global exponential stability of the equilibrium solution by using the method of variational parameter and inequality technique. These conditions obtained have important leading significance in the designs and applications of global exponential stability for reaction-diffusion neural circuit systems with delays. Lastly, one example is given to illustrate the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document