scholarly journals Shorter Decentralized Attribute-Based Encryption via Extended Dual System Groups

2017 ◽  
Vol 2017 ◽  
pp. 1-19
Author(s):  
Jie Zhang ◽  
Jie Chen ◽  
Aijun Ge ◽  
Chuangui Ma

Decentralized attribute-based encryption (ABE) is a special form of multiauthority ABE systems, in which no central authority and global coordination are required other than creating the common reference parameters. In this paper, we propose a new decentralized ABE in prime-order groups by using extended dual system groups. We formulate some assumptions used to prove the security of our scheme. Our proposed scheme is fully secure under the standard k-Lin assumption in random oracle model and can support any monotone access structures. Compared with existing fully secure decentralized ABE systems, our construction has shorter ciphertexts and secret keys. Moreover, fast decryption is achieved in our system, in which ciphertexts can be decrypted with a constant number of pairings.

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Seth Alornyo ◽  
Kingsford Kissi Mireku ◽  
Mustapha Adamu Mohammed ◽  
Daniel Adu-Gyamfi ◽  
Michael Asante

AbstractKey-insulated encryption reduces the problem of secret key exposure in hostile setting while signcryption cryptosystem attains the benefits of digitally signing a ciphertext and public key cryptosystem. In this study, we merge the primitives of parallel key-insulation cryptosystem and signcryption with equality test to construct ID-based parallel key-insulated signcryption with a test for equality (ID-PKSET) in cloud computing. The construction prevent data forgery, data re-play attacks and reduces the leakage of secret keys in harsh environments. Our scheme attains the security property of existential unforgeable chosen message attack (EUF-CMA) and indistinquishable identity chosen ciphertext attack (IND-ID-CCA2) using random oracle model.


2020 ◽  
Author(s):  
Cong Li ◽  
Qingni Shen ◽  
Zhikang Xie ◽  
Xinyu Feng ◽  
Yuejian Fang ◽  
...  

Abstract Attribute-based encryption with equality test (ABEET) simultaneously supports fine-grained access control on the encrypted data and plaintext message equality comparison without decrypting the ciphertexts. Recently, there have been several literatures about ABEET proposed. Nevertheless, most of them explore the ABEET schemes in the random oracle model, which has been pointed out to have many defects in practicality. The only existing ABEET scheme in the standard model, proposed by Wang et al., merely achieves the indistinguishable against chosen-plaintext attack security. Considering the aforementioned problems, in this paper, we propose the first direct adaptive chosen-ciphertext security ciphertext-policy ABEET scheme in the standard model. Our method only adopts a chameleon hash function and adds one dummy attribute to the access structure. Compared with the previous works, our scheme achieves the security improvement, ciphertext validity check and large universe. Besides, we further optimize our scheme to support the outsourced decryption. Finally, we first give the detailed theoretical analysis of our constructions in computation and storage costs, then we implement our constructions and carry out a series of experiments. Both results indicate that our constructions are more efficient in Setup and Trapdoor and have the shorter public parameters than the existing ABEET ones do.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yousheng Zhou ◽  
Siling Liu ◽  
Min Xiao ◽  
Shaojiang Deng ◽  
Xiaojun Wang

The advent of intelligent transportation system has a crucial impact on the traffic safety and efficiency. To cope with security issues such as spoofing attack and forgery attack, many authentication schemes for vehicular ad hoc networks (VANETs) have been developed, which are based on the hypothesis that secret keys are kept perfectly secure. However, key exposure is inevitable on account of the openness of VANET environment. To address this problem, key insulation is introduced in our proposed scheme. With a helper device, vehicles could periodically update their own secret keys. In this way, the forward and backward secrecy has been achieved. In addition, the elliptic curve operations have been integrated to improve the performance. The random oracle model is adopted to prove the security of the proposed scheme, and the experiment has been conducted to demonstrate the comparison between our scheme and the existing similar schemes.


2013 ◽  
Vol 13 (3) ◽  
pp. 77-90
Author(s):  
Shan-Shan Tu ◽  
Shao-Zhang Niu ◽  
Meng-Jiao Li

Abstract In order to keep the confidential data in the cloud against unauthorized parties, a cryptographic access control solution based on Attribute-Based Encryption (ABE) and Identity-Based Signature (IBS) is introduced in this paper. Under the premise that cloud service provider is untrustful, the proposed scheme can ensure the data security of the cloud storage system in an open environment, as well as reduce the complexity of management. Analysis and experimental results show that the scheme can be semantically secure against adaptive chosen ciphertext attacks under the random oracle model. Our concrete access control scheme can enhance the efficiency of the cloud to a certain extent.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Suhui Liu ◽  
Jiguo Yu ◽  
Chunqiang Hu ◽  
Mengmeng Li

Cloud-assisted Internet of Things (IoT) significantly facilitate IoT devices to outsource their data for high efficient management. Unfortunately, some unsettled security issues dramatically impact the popularity of IoT, such as illegal access and key escrow problem. Traditional public-key encryption can be used to guarantees data confidentiality, while it cannot achieve efficient data sharing. The attribute-based encryption (ABE) is the most promising way to ensure data security and to realize one-to-many fine-grained data sharing simultaneously. However, it cannot be well applied in the cloud-assisted IoT due to the complexity of its decryption and the decryption key leakage problem. To prevent the abuse of decryption rights, we propose a multiauthority ABE scheme with white-box traceability in this paper. Moreover, our scheme greatly lightens the overhead on devices by outsourcing the most decryption work to the cloud server. Besides, fully hidden policy is implemented to protect the privacy of the access policy. Our scheme is proved to be selectively secure against replayable chosen ciphertext attack (RCCA) under the random oracle model. Some theory analysis and simulation are described in the end.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Zhen Qin ◽  
Jianfei Sun ◽  
Dajiang Chen ◽  
Hu Xiong

Online healthcare social networks (OHSNs) play an essential role in sharing information among medical experts and patients who are equipped with similar experiences. To access other patients’ data or experts’ diagnosis anywhere and anytime, it is necessary to integrate the OHSN into the Internet as part of the Internet of Things (IoT). Therefore, it is crucial to design an efficient and versatile access control scheme that can grant and revoke a user to access the OHSN. In this paper, we propose novel attribute-based encryption (ABE) features with user revocation and verifiable decryption outsourcing to control the access privilege of the users. The security of the proposed ABE scheme is given in the well-studied random oracle model. With the proposed ABE scheme, the malicious users can be excluded from the system and the user can offload most of the overhead in the decryption to an untrusted cloud server in a verifiable manner. An access control scheme for the OHSN has been given in the context of the IoT based on the proposed ABE scheme. The simulation demonstrates that our access control mechanism is practical.


2013 ◽  
Vol 411-414 ◽  
pp. 721-724 ◽  
Author(s):  
Bao Dian Wei

Most of the existing ID-based designated verifier proxy signature schemes are implemented with pairings. The computation of parings is still much more expensive than the common modular multiplications and exponentiations. To obtain better efficiency, we construct an efficient ID-based DVPS scheme without pairings. The scheme is designed based on the hardness of the discrete logarithm problems. It is proven secure against adaptively chosen message attacks, in the random oracle model.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Chao Ma ◽  
Haiying Gao ◽  
Duo Wei

Attribute-based encryption achieves fine-grained access control, especially in a cloud computing environment. In a ciphertext-policy attribute-based encryption (CP-ABE) scheme, the ciphertexts are associated with the access policies, while the secret keys are determined by the attributes. In recent years, people have tried to find more effective access structures to improve the efficiency of encryption systems. This paper presents a ciphertext-policy attribute-based encryption scheme that supports arithmetic span programs. On the composite-order bilinear group, the security of the scheme is proven by experimental sequence based on the combination of composite-order bilinear entropy expansion lemma and subgroup decision (SD) assumption. And, it is an adaptively secure scheme with constant-size public parameters.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Fei Tang ◽  
Jiali Bao ◽  
Yonghong Huang ◽  
Dong Huang ◽  
Fuqun Wang

Identification schemes support that a prover who holding a secret key to prove itself to any verifier who holding the corresponding public key. In traditional identity-based identification schemes, there is a key generation center to generate all users’ secret keys. This means that the key generation center knows all users’ secret key, which brings the key escrow problem. To resolve this problem, in this work, we define the model of identity-based identification without a trusted party. Then, we propose a multi-authority identity-based identification scheme based on bilinear pairing. Furthermore, we prove the security of the proposed scheme in the random oracle model against impersonation under passive and concurrent attacks. Finally, we give an application of the proposed identity-based identification scheme to blockchain.


Sign in / Sign up

Export Citation Format

Share Document