scholarly journals Experimental Results on Chiral Magnetic and Vortical Effects

2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Gang Wang ◽  
Liwen Wen

Various novel transport phenomena in chiral systems result from the interplay of quantum anomalies with magnetic field and vorticity in high-energy heavy-ion collisions and could survive the expansion of the fireball and be detected in experiments. Among them are the chiral magnetic effect, the chiral vortical effect, and the chiral magnetic wave, the experimental searches for which have aroused extensive interest. The goal of this review is to describe the current status of experimental studies at Relativistic Heavy-Ion Collider at BNL and the Large Hadron Collider at CERN and to outline the future work in experiment needed to eliminate the existing uncertainties in the interpretation of the data.

2020 ◽  
Vol 70 (1) ◽  
pp. 293-321 ◽  
Author(s):  
Wei Li ◽  
Gang Wang

The interplay of quantum anomalies with strong magnetic fields and vorticity in chiral systems could lead to novel transport phenomena, such as the chiral magnetic effect (CME), the chiral magnetic wave (CMW), and the chiral vortical effect (CVE). In high-energy nuclear collisions, these chiral effects may survive the expansion of a quark–gluon plasma fireball and be detected in experiments. The experimental searches for the CME, the CMW, and the CVE have aroused extensive interest over the past couple of decades. The main goal of this article is to review the latest experimental progress in the search for these novel chiral transport phenomena at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN. Future programs to help reduce uncertainties and facilitate the interpretation of the data are also discussed.


2018 ◽  
Vol 172 ◽  
pp. 05010 ◽  
Author(s):  
Christine Nattrass

The Quark Gluon Plasma (QGP) is created in high energy heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). This medium is transparent to electromagnetic probes but nearly opaque to colored probes. Hard partons produced early in the collision fragment and hadronize into a collimated spray of particles called a jet. The partons lose energy as they traverse the medium, a process called jet quenching. Most of the lost energy is still correlated with the parent parton, contributing to particle production at larger angles and lower momenta relative to the parent parton than in proton-proton collisions. This partonic energy loss can be measured through several observables, each of which give different insights into the degree and mechanism of energy loss. The measurements to date are summarized and the path forward is discussed.


Author(s):  
Debasish Das

A strongly coupled Quark–Gluon Plasma (sQGP) is created in the high-energy heavy-ion collisions at Relativistic Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC). Our present understanding of sQGP as a very good liquid with astonishingly low viscosity is reviewed. With the arrival of the interesting results from LHC in high-energy [Formula: see text] and [Formula: see text], a new endeavor to characterize the transition from these small systems to heavy ions [Formula: see text] is now in place, since even the small systems showed prominent similarities to heavy ions in the rising multiplicity domains. An outlook of future possibilities for better measurements is also made at the end of this brief review.


J ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 1-14
Author(s):  
Yuri Sinyukov ◽  
Volodymyr Shapoval

The results on description of direct photon yields, transverse momentum spectra, and flow harmonics, measured in ultrarelativistic heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) for different collision centrality classes, analyzed within the Integrated Hydrokinetic Model (iHKM) are reviewed. The iHKM simulation results, corresponding to the two opposite approaches to the matter evolution treatment at the final stage of the system’s expansion within the model, namely, the chemically equilibrated and the chemically frozen evolution, are compared. The so-called “direct photon puzzle” is addressed, and its possible solution, suggesting the account for additional photon emission at confinement, is considered.


2018 ◽  
Vol 68 (1) ◽  
pp. 211-235 ◽  
Author(s):  
James L. Nagle ◽  
William A. Zajc

The bulk motion of nuclear matter at the ultrahigh temperatures created in heavy ion collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider is well described in terms of nearly inviscid hydrodynamics, thereby establishing this system of quarks and gluons as the most perfect fluid in nature. A revolution in the field is under way, spearheaded by the discovery of similar collective, fluid-like phenomena in much smaller systems including p+ p, p+ A, d+Au, and3He+Au collisions. We review these exciting new observations and their profound implications for hydrodynamic descriptions of small and/or out-of-equilibrium systems.


2015 ◽  
Vol 2015 ◽  
pp. 1-23 ◽  
Author(s):  
Li-Na Gao ◽  
Fu-Hu Liu

We propose a new revised Landau hydrodynamic model to study systematically the pseudorapidity distributions of charged particles produced in heavy ion collisions over an energy range from a few GeV to a few TeV per nucleon pair. The interacting system is divided into three sources, namely, the central, target, and projectile sources, respectively. The large central source is described by the Landau hydrodynamic model and further revised by the contributions of the small target/projectile sources. The modeling results are in agreement with the available experimental data at relativistic heavy ion collider, large hadron collider, and other energies for different centralities. The value of square speed of sound parameter in different collisions has been extracted by us from the widths of rapidity distributions. Our results show that, in heavy ion collisions at energies of the two colliders, the central source undergoes a phase transition from hadronic gas to quark-gluon plasma liquid phase; meanwhile, the target/projectile sources remain in the state of hadronic gas. The present work confirms that the quark-gluon plasma is of liquid type rather than being of a gas type.


Universe ◽  
2019 ◽  
Vol 5 (5) ◽  
pp. 118
Author(s):  
Eszter Frajna ◽  
Róbert Vértesi

The ALICE experiment at the Large Hadron Collider (LHC) ring is designed to study the strongly interacting matter at extreme energy densities created in high-energy heavy-ion collisions. In this paper we investigate correlations of heavy and light flavors in simulations at LHC energies at mid-rapidity, with the primary purpose of proposing experimental applications of these methods. Our studies have shown that investigating the correlation images can aid the experimental separation of heavy quarks and help understanding the physics that create them. The shape of the correlation peaks can be used to separate the electrons stemming from b quarks. This could be a method of identification that, combined with identification in silicon vertex detectors, may provide much better sample purity for examining the secondary vertex shift. Based on a correlation picture it is also possible to distinguish between prompt and late contributions to D meson yields.


Universe ◽  
2020 ◽  
Vol 6 (5) ◽  
pp. 61 ◽  
Author(s):  
Georg Wolschin

The rapid thermalization of quarks and gluons in the initial stages of relativistic heavy-ion collisions is treated using analytic solutions of a nonlinear diffusion equation with schematic initial conditions, and for gluons with boundary conditions at the singularity. On a similarly short time scale of t ≤ 1 fm/c, the stopping of baryons is accounted for through a QCD-inspired approach based on the parton distribution functions of valence quarks, and gluons. Charged-hadron production is considered phenomenologically using a linear relativistic diffusion model with two fragmentation sources, and a central gluonic source that rises with ln 3 ( s N N ) . The limiting-fragmentation conjecture that agrees with data at energies reached at the Relativistic Heavy-Ion Collider (RHIC) is found to be consistent with Large Hadron Collider (LHC) data for Pb-Pb at s N N = 2.76 and 5.02 TeV. Quarkonia are used as hard probes for the properties of the quark-gluon plasma (QGP) through a comparison of theoretical predictions with recent CMS, ALICE and LHCb data for Pb-Pb and p-Pb collisions.


Sign in / Sign up

Export Citation Format

Share Document