scholarly journals Development of a Voltage Compensation Type Active SFCL and Its Application for Transient Performance Enhancement of a PMSG-Based Wind Turbine System

2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Lei Chen ◽  
Hongkun Chen ◽  
Jun Yang ◽  
Huiwen He

Considering the rapid development of high temperature superconducting (HTS) materials, superconducting power applications have attracted more and more attention in the power industry, particularly for electrical systems including renewable energy. This paper conducts experimental tests on a voltage compensation type active superconducting fault current limiter (SFCL) prototype and explores the SFCL’s application in a permanent-magnet synchronous generator- (PMSG-) based wind turbine system. The SFCL prototype is composed of a three-phase air-core superconducting transformer and a voltage source converter (VSC) integrated with supercapacitor energy storage. According to the commissioning test and the current-limiting test, the SFCL prototype can automatically suppress the fault current and offer a highly controlled compensation voltage in series with the 132 V electrical test system. To expand the application of the active SFCL in a 10 kW class PMSG-based wind turbine system, digital simulations under different fault cases are performed in MATLAB/Simulink. From the demonstrated simulation results, using the active SFCL can help to maintain the power balance, mitigate the voltage-current fluctuation, and improve the wind energy efficiency. The active SFCL can be regarded as a feasible solution to assist the PMSG-based wind turbine system to achieve low-voltage ride-through (LVRT) operation.

Author(s):  
Sarika D. Patil

Recently the wind power generation has attracted special interest and many wind power stations are being in service in the world. In the wind turbine that mostly uses induction generators, tend to drain large amounts of Vars from the grid, potentially causing low voltage and may be voltage stability problems for the utility owner, especially in the case of large load variation on distribution feeder. Voltage-source converter based various FACTS devices have been used for flexible power flow control, secure loading and damping of power system oscillations. Some of those are used also to improve transient and dynamic stability of the wind power generation (WPGS).


2018 ◽  
Author(s):  
Nicolás Espinoza ◽  
Ola Carlson

Abstract. One of the main challenge for the wind energy development is to make the wind turbines efficient in respect of costs while maintaining a safe and reliable operation. An important design criterion is the fulfilment of Grid Codes given by transmission system operators (TSO). The Grid Codes state how wind turbines/farms must behave when connected to the grid in normal and abnormal conditions. In this regard, it is well known that not all the technical requirements can be tested by using the actual impedance-based testing equipment. For this reason, a new type of testing equipment which comprises the use of fully-rated Voltage Source Converter (VSC) in back-to-back configuration is proposed. Thanks to the full controllability of the applied voltage in terms of magnitude, phase and frequency, the use of VSC-based testing equipment, provides more flexibility as compared with actual testing systems. In addition, the AC grid is decoupled from the tested object when performing the test; meaning that the strength of the grid is not a major limitation. Finally, test results of a 4 MW wind turbine and an 8 MW test equipment, located in Gothenburg, Sweden, are shown in order to validate the investigated grid code testing methodology.


Author(s):  
Ulas Eminoglu ◽  
Ozan Karahan

The installation of wind turbines and consequently the use of wind energy is increasing day by day, since the rapid development in semiconductor technology has led to more advance in the wind turbine technologies. On the other hand, it is well known that a Graphical User Interface (GUI) application provides great advantages to the user such as; the use of programming language and data input for systems without coding, getting the results with the help of symbols, icons and other visual graphics. Accordingly, in this paper, to determine the amount of energy production, cost of energy and etc., of a Wind Turbine System (WTS) that has been established or will be installed, a tool is introduced by the presented software package. Besides the analysis option, the package also offers optimization algorithms that would be used for the layout design of types of Wind Turbine Systems which are called fixed-speed and variable-speed Wind Turbine Systems seperately by keeping in consideration the wind speed and geographic features of the regions. The graphical user interface, which is the one of important features of C# program were used and called Analysis & Design Optimization Package (A&DOP).


Author(s):  
Mario A. Rios ◽  
Maria F. Perez

<p>Planning of high voltage direct current (HVDC) grids requires inclusion of reliability assessment of alternatives under study. This paper proposes a methodology to evaluate the adequacy of voltage source converter/VSC-HVDC networks. The methodology analyses the performance of the system using N-1 and N-2 contingencies in order to detect weaknesses in the DC network and evaluates two types of remedial actions to keep the entire system under the acceptable operating limits. The remedial actions are applied when a violation of these limits on the DC system occurs; those include topology changes in the network and adjustments of power settings of VSC converter stations. The CIGRE B4 DC grid test system is used for evaluating the reliability/adequacy performance by means of the proposed methodology in this paper. The proposed remedial actions are effective for all contingencies; then, numerical results are as expected. This work is useful for planning and operation of grids based on VSC-HVDC technology.</p>


Sign in / Sign up

Export Citation Format

Share Document