scholarly journals Improved Encrypted-Signals-Based Reversible Data Hiding Using Code Division Multiplexing and Value Expansion

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Xianyi Chen ◽  
Haidong Zhong ◽  
Lizhi Xiong ◽  
Zhihua Xia

Compared to the encrypted-image-based reversible data hiding (EIRDH) method, the encrypted-signals-based reversible data hiding (ESRDH) technique is a novel way to achieve a greater embedding rate and better quality of the decrypted signals. Motivated by ESRDH using signal energy transfer, we propose an improved ESRDH method using code division multiplexing and value expansion. At the beginning, each pixel of the original image is divided into several parts containing a little signal and multiple equal signals. Next, all signals are encrypted by Paillier encryption. And then a large number of secret bits are embedded into the encrypted signals using code division multiplexing and value expansion. Since the sum of elements in any spreading sequence is equal to 0, lossless quality of directly decrypted signals can be achieved using code division multiplexing on the encrypted equal signals. Although the visual quality is reduced, high-capacity data hiding can be accomplished by conducting value expansion on the encrypted little signal. The experimental results show that our method is better than other methods in terms of the embedding rate and average PSNR.

Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 145
Author(s):  
Jung-Yao Yeh ◽  
Chih-Cheng Chen ◽  
Po-Liang Liu ◽  
Ying-Hsuan Huang

Data hiding is the art of embedding data into a cover image without any perceptual distortion of the cover image. Moreover, data hiding is a very crucial research topic in information security because it can be used for various applications. In this study, we proposed a high-capacity data-hiding scheme for absolute moment block truncation coding (AMBTC) decompressed images. We statistically analyzed the composition of the secret data string and developed a unique encoding and decoding dictionary search for adjusting pixel values. The dictionary was used in the embedding and extraction stages. The dictionary provides high data-hiding capacity because the secret data was compressed using dictionary-based coding. The experimental results of this study reveal that the proposed scheme is better than the existing schemes, with respect to the data-hiding capacity and visual quality.


2019 ◽  
Vol 9 (14) ◽  
pp. 2910 ◽  
Author(s):  
Neng Zhou ◽  
Minqing Zhang ◽  
Han Wang ◽  
Mengmeng Liu ◽  
Yan Ke ◽  
...  

To combine homomorphic public key encryption with reversible data hiding, a reversible data hiding scheme in homomorphic encrypted image based on EC-EG is proposed. Firstly, the cover image is segmented. The square grid pixel group randomly selected by the image owner has one reference pixel and eight target pixels. The n least significant bits (LSBs) of the reference pixel and all bits of target pixel are self-embedded into other parts of the image by a method of predictive error expansion (PEE). To avoid overflowing when embedding data, the n LSBs of the reference pixel are reset to zero before encryption. Then, the pixel values of the image are encrypted after being encoded onto the points of the elliptic curve. The encrypted reference pixel replaces the encrypted target pixels surrounding it, thereby constructing the mirroring central ciphertext (MCC). In a set of MCC, the data hider embeds the encrypted additional data into the n LSBs of the target pixels by homomorphic addition in ciphertexts, while the reference pixel remains unchanged. The receiver can directly extract additional data by homomorphic subtraction in ciphertexts between the target pixels and the corresponding reference pixel; extract the additional data by subtraction in plaintexts with the directly decrypted image; and restore the cover image without loss. The experimental results show that the proposed scheme has higher security than the similar algorithms, and the average embedding rate of the scheme is 0.25 bpp under the premise of ensuring the quality of the directly decrypted image.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1072
Author(s):  
Arun Kumar Rai ◽  
Neeraj Kumar ◽  
Rajeev Kumar ◽  
Hari Om ◽  
Satish Chand ◽  
...  

In this paper, a high capacity reversible data hiding technique using a parametric binary tree labeling scheme is proposed. The proposed parametric binary tree labeling scheme is used to label a plaintext image’s pixels as two different categories, regular pixels and irregular pixels, through a symmetric or asymmetric process. Regular pixels are only utilized for secret payload embedding whereas irregular pixels are not utilized. The proposed technique efficiently exploits intra-block correlation, based on the prediction mean of the block by symmetry or asymmetry. Further, the proposed method utilizes blocks that are selected for their pixel correlation rather than exploiting all the blocks for secret payload embedding. In addition, the proposed scheme enhances the encryption performance by employing standard encryption techniques, unlike other block based reversible data hiding in encrypted images. Experimental results show that the proposed technique maximizes the embedding rate in comparison to state-of-the-art reversible data hiding in encrypted images, while preserving privacy of the original contents.


2018 ◽  
Vol 27 (11) ◽  
pp. 1850175 ◽  
Author(s):  
Neeraj Kumar Jain ◽  
Singara Singh Kasana

The proposed reversible data hiding technique is the extension of Peng et al.’s technique [F. Peng, X. Li and B. Yang, Improved PVO-based reversible data hiding, Digit. Signal Process. 25 (2014) 255–265]. In this technique, a cover image is segmented into nonoverlapping blocks of equal size. Each block is sorted in ascending order and then differences are calculated on the basis of locations of its largest and second largest pixel values. Negative predicted differences are utilized to create empty spaces which further enhance the embedding capacity of the proposed technique. Also, the already sorted blocks are used to enhance the visual quality of marked images as pixels of these blocks are more correlated than the unsorted pixels of the block. Experimental results show the effectiveness of the proposed technique.


2019 ◽  
Vol 11 (4) ◽  
pp. 118-129
Author(s):  
Bin Ma ◽  
Xiao-Yu Wang ◽  
Bing Li

A novel high capacity and security reversible data hiding scheme is proposed in this article, in which the secret data is represented by different orthogonal spreading sequences and repeatedly embedded into the cover image without disturbing each other in the light of Code Division Multiple Access (CDMA) technique, and thus the embedding capacity is enlarged. As most elements of orthogonal spreading sequences are mutually canceled in the process of repeated embedding, it keeps the distortion of the embedded image at a low level even with high embedding capacity. Moreover, only the receiver who has the spreading sequence and the embedding gain factor the same as the sender can extract the secret data and achieve the original image exactly, thus the proposed scheme achieves high embedding security than other schemes. The results of the experiment demonstrates that the CDMA based reversible data hiding scheme could achieve higher image quality at moderate-to-high embedding capacity compared with other state-of-the-art schemes.


2020 ◽  
Vol 9 (1) ◽  
pp. 1388-1390

For encrypted images (RDHEI) reversible data shielding is an important technique for embedding data into the encrypted domain. A hidden key encrypts an original picture, and additional information may be inserted into the encrypted image during or after transmission without knowing the crypting key or the original contents of the picture. The hidden message can be retrieved during the decoding process and the original image can be restored. RDHEI has begun to generate academic attention over the past couple of years. Data privacy has become a real issue with the growth of cloud computing. None of the current methods, however, will allow us to hide a great deal of information reversibly. In this document we propose a new reversible approach with a very high capacity based on MSB (most important bit) forecasting. We present two approaches: a reversible high-capacity data hiding approach with a prediction-correction error (CPEHCRDH) and an integrated-prediction error (EPE-HCRDH) reversible data hiding approach. With this approach, our findings are better than those achieved with the existing state-of-the-art approaches, both in terms of image quality recovered and embedding efficiency.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 644 ◽  
Author(s):  
Cheonshik Kim ◽  
Ching-Nung Yang ◽  
Lu Leng

We present a new data hiding method based on Adaptive BTC Edge Quantization (ABTC-EQ) using an optimal pixel adjustment process (OPAP) to optimize two quantization levels. The reason we choose ABTC-EQ as a cover media is that it is superior to AMBTC in maintaining a high-quality image after encoding is executed. ABTC-EQ is represented by a form of t r i o ( Q 1 , Q 2 , [ Q 3 ] , BM) where Q is quantization levels ( Q 1 ≤ Q 2 ≤ Q 3 ) , and BM is a bitmap). The number of quantization levels are two or three, depending on whether the cover image has an edge or not. Before embedding secret bits in every block, we categorize every block into smooth block or complex block by a threshold. In case a block size is 4x4, the sixteen secret bits are replaced by a bitmap of the smooth block for embedding a message directly. On the other hand, OPAP method conceals 1 bit into LSB and 2LSB respectively, and maintains the quality of an image as a way of minimizing the errors which occur in the embedding procedure. The sufficient experimental results demonsrate that the performance of our proposed scheme is satisfactory in terms of the embedding capacity and quality of an image.


2018 ◽  
Vol 30 (10) ◽  
pp. 1954
Author(s):  
Xiangguang Xiong ◽  
Yongfeng Cao ◽  
Weihua Ou ◽  
Bin Liu ◽  
Li Wei ◽  
...  

2021 ◽  
pp. 1-11
Author(s):  
Kusan Biswas

In this paper, we propose a frequency domain data hiding method for the JPEG compressed images. The proposed method embeds data in the DCT coefficients of the selected 8 × 8 blocks. According to the theories of Human Visual Systems  (HVS), human vision is less sensitive to perturbation of pixel values in the uneven areas of the image. In this paper we propose a Singular Value Decomposition based image roughness measure (SVD-IRM) using which we select the coarse 8 × 8 blocks as data embedding destinations. Moreover, to make the embedded data more robust against re-compression attack and error due to transmission over noisy channels, we employ Turbo error correcting codes. The actual data embedding is done using a proposed variant of matrix encoding that is capable of embedding three bits by modifying only one bit in block of seven carrier features. We have carried out experiments to validate the performance and it is found that the proposed method achieves better payload capacity and visual quality and is more robust than some of the recent state-of-the-art methods proposed in the literature.


Computers ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 86
Author(s):  
Jijun Wang ◽  
Soo Fun Tan

Separable Reversible Data Hiding in Encryption Image (RDH-EI) has become widely used in clinical and military applications, social cloud and security surveillance in recent years, contributing significantly to preserving the privacy of digital images. Aiming to address the shortcomings of recent works that directed to achieve high embedding rate by compensating image quality, security, reversible and separable properties, we propose a two-tuples coding method by considering the intrinsic adjacent pixels characteristics of the carrier image, which have a high redundancy between high-order bits. Subsequently, we construct RDH-EI scheme by using high-order bits compression, low-order bits combination, vacancy filling, data embedding and pixel diffusion. Unlike the conventional RDH-EI practices, which have suffered from the deterioration of the original image while embedding additional data, the content owner in our scheme generates the embeddable space in advance, thus lessening the risk of image destruction on the data hider side. The experimental results indicate the effectiveness of our scheme. A ratio of 28.91% effectively compressed the carrier images, and the embedding rate increased to 1.753 bpp with a higher image quality, measured in the PSNR of 45.76 dB.


Sign in / Sign up

Export Citation Format

Share Document