scholarly journals Integration of Artificial Neural Network Modeling and Hyperspectral Data Preprocessing for Discrimination of Colla Corii Asini Adulteration

2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Huihui Wang ◽  
Kunlun Wang ◽  
Biyao Wang ◽  
Yan Lv ◽  
Xueheng Tao ◽  
...  

The study of hyperspectral imaging in tandem with spectral preprocessing and neural network techniques was conducted to realize Colla Corii Asini (CCA, E’jiao) adulteration discrimination. CCA was adulterated with pig skin gelatin (PSG) in the range of 5–95% (w/w) at 5% increments. Three methods were used to pretreat the original spectra, which are multiplicative scatter correction (MSC), Savitzky-Golay (SG) smoothing, and the combination of MSC and SG (MSC-SG). SPA was employed to select the characteristic wavelengths (CWs) to reduce the high dimension. Colour and texture features of CWs were extracted as input of prediction model. Two kinds of artificial neural network (ANN) with three spectral preprocessing methods were applied to establish the prediction models. The prediction model of generalized regression neural network (GRNN) in tandem with the MSC-SG preprocessed method presented satisfactory performance with the correct classification rate value of 92.5%. The results illustrated that the integration of preprocessing methods, hyperspectral imaging features, and ANN modeling had a great potential and feasibility for CCA adulteration discrimination.

Noise Mapping ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 172-184
Author(s):  
Ramesh B. Ranpise ◽  
B. N. Tandel ◽  
Vivek A. Singh

Abstract In the issue of expanding noise levels the world over, road traffic noise is main contributor. The investigation of street traffic noise in urban communities is a significant issue. Ample opportunity has already passed to understand the significance of noise appraisal through prediction models with the goal that assurance against street traffic noise can be actualized. Noise predictions models are utilized in an increasing range of decision-making applications. This study’s main objective is to assess ambient noise levels at major arterial roads of Surat city, compare these with prescribed standards, and develop a noise prediction model for arterial roads using an Artificial Neural Network. The feed-forward back propagation method has been used to train the model. Models have been developed using the data of three roads separately, and one final model has also been developed using the data of all three roads. Among the prediction in three arterial roads, the predicted output result from the model of Adajan-Rander showed a better correlation with a mean squared error (MSE) of 0.789 and R2 value of 0.707. But with the combined model, there is a slight deterioration in mean squared value (MSE) 1.550, with R2 not getting changed much significantly, i.e., 0.755. However, the combined model’s prediction can be adopted due to the variety of data used in its training.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuqi Wang ◽  
Liangxu Wang ◽  
Yanli Sun ◽  
Miao Wu ◽  
Yingjie Ma ◽  
...  

Abstract Background Osteoporosis is a gradually recognized health problem with risks related to disease history and living habits. This study aims to establish the optimal prediction model by comparing the performance of four prediction models that incorporated disease history and living habits in predicting the risk of Osteoporosis in Chongqing adults. Methods We conduct a cross-sectional survey with convenience sampling in this study. We use a questionnaire From January 2019 to December 2019 to collect data on disease history and adults’ living habits who got dual-energy X-ray absorptiometry. We established the prediction models of osteoporosis in three steps. Firstly, we performed feature selection to identify risk factors related to osteoporosis. Secondly, the qualified participants were randomly divided into a training set and a test set in the ratio of 7:3. Then the prediction models of osteoporosis were established based on Artificial Neural Network (ANN), Deep Belief Network (DBN), Support Vector Machine (SVM) and combinatorial heuristic method (Genetic Algorithm - Decision Tree (GA-DT)). Finally, we compared the prediction models’ performance through accuracy, sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC) to select the optimal prediction model. Results The univariate logistic model found that taking calcium tablet (odds ratio [OR] = 0.431), SBP (OR = 1.010), fracture (OR = 1.796), coronary heart disease (OR = 4.299), drinking alcohol (OR = 1.835), physical exercise (OR = 0.747) and other factors were related to the risk of osteoporosis. The AUCs of the training set and test set of the prediction models based on ANN, DBN, SVM and GA-DT were 0.901, 0.762; 0.622, 0.618; 0.698, 0.627; 0.744, 0.724, respectively. After evaluating four prediction models’ performance, we selected a three-layer back propagation neural network (BPNN) with 18, 4, and 1 neuron in the input layer, hidden and output layers respectively, as the optimal prediction model. When the probability was greater than 0.330, osteoporosis would occur. Conclusions Compared with DBN, SVM and GA-DT, the established ANN model had the best prediction ability and can be used to predict the risk of osteoporosis in physical examination of the Chongqing population. The model needs to be further improved through large sample research.


Sign in / Sign up

Export Citation Format

Share Document