scholarly journals Artificial Neural Network to Predict Varicocele Impact on Male Fertility through Testicular Endocannabinoid Gene Expression Profiles

2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Davide Perruzza ◽  
Nicola Bernabò ◽  
Cinzia Rapino ◽  
Luca Valbonetti ◽  
Ilaria Falanga ◽  
...  

The relationship between varicocele and fertility has always been a matter of debate because of the absence of predictive clinical indicators or molecular markers able to define the severity of this disease. Even though accumulated evidence demonstrated that the endocannabinoid system (ECS) plays a central role in male reproductive biology, particularly in the testicular compartment, to date no data point to a role for ECS in the etiopathogenesis of varicocele. Therefore, the present research has been designed to investigate the relationship between testicular ECS gene expression and fertility, using a validated animal model of experimental varicocele (VAR), taking advantage of traditional statistical approaches and artificial neural network (ANN). Experimental induction of VAR led to a clear reduction of spermatogenesis in left testes ranging from a mild (Johnsen score 7: 21%) to a severe (Johnsen score 4: 58%) damage of the germinal epithelium. However, the mean number of new-borns recorded after two sequential matings was quite variable and independent of the Johnsen score. While the gene expression of biosynthetic and degrading enzymes of AEA (NAPE-PLD and FAAH, respectively) and of 2-AG (DAGLα and MAGL, respectively), as well as their binding cannabinoid receptors (CB1 and CB2), did not change between testes and among groups, a significant downregulation of vanilloid (TRPV1) expression was recorded in left testes of VAR rats and positively correlated with animal fertility. Interestingly, an ANN trained by inserting the left and right testicular ECS gene expression profiles (inputs) was able to predict varicocele impact on male fertility in terms of mean number of new-borns delivered (outputs), with a very high accuracy (average prediction error of 1%). The present study provides unprecedented information on testicular ECS gene expression patterns during varicocele, by developing a freely available predictive ANN model that may open new perspectives in the diagnosis of varicocele-associated infertility.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2318-2318
Author(s):  
Damian P.J. Finnegan ◽  
Michael F. Quinn ◽  
Mervyn Humphreys ◽  
Terence R.J. Lappin ◽  
Mary Frances McMullin ◽  
...  

Abstract The acute myeloid leukemias (AMLs) are a heterogeneous group of hematological malignancies with diverse clinical outcomes. Pre-treatment karyotype analysis identifies biologically distinct subgroups and is currently used as a predictor of response to induction chemotherapy and risk of relapse. Cases may be stratified into one of three prognostic groups as follows: relatively favorable prognosis [t(8;21), t(15;17) and inv(16)]; adverse prognosis [−5/del(5q), −7, abnormalities of chromosome 3q and complex karyotype]; and intermediate prognosis [remainder including normal karyotype]. HOX genes encode master transcription factors which regulate key developmental processes including differentiation, proliferation and apoptosis. Humans have 39 HOX genes and multiple lines of evidence implicate their deregulated expression in the pathogenesis of AML. Drabkin et al. (Leukemia2002; 16: 186–95) have reported that AMLs with a relatively favorable prognostic karyotype are associated with low levels of HOX gene expression whereas AMLs with an adverse prognostic karyotype have higher levels of expression. To further characterize HOX gene expression in cytogenetic prognostic groups we determined the expression profiles of 26 HOX genes by real-time quantitative PCR (Q-PCR) in diagnostic samples, representative of the three prognostic groups, from 26 patients with de novo AML. Profiles were then analyzed using Artificial Neural Network based computational approaches to identify a subset of HOX genes which could discriminate between prognostic groups in a predictive fashion. Predictive models were developed for each prognostic group. Predictive classification performance for prognostic groups based on blind data of 88%, 92%, and 97% (with equal sensitivity and specificity) were achieved for the three prognostic groups. The models were interrogated to determine the nature of the relationship between the key HOX genes identified and prognostic group. The relatively favorable prognosis group was primarily defined by downregulation of HOXA5 and upregulation of HOXC4. The intermediate prognosis group was characterized by upregulation of HOXB3 and downregulation of HOXD10 and the adverse prognosis group by downregulation of both HOXC5 and HOXD3. Although the sample size is small, the results show that Artificial Neural Network based computational approaches are capable of further characterizing HOX gene expression within AML prognostic groups as determined by presenting karyotype and that measuring the expression levels of a small number of HOX genes at diagnosis can provide useful clinical information in cases where karyotype analysis has been unsuccessful.


2008 ◽  
Vol 5 (2) ◽  
Author(s):  
Li Teng ◽  
Laiwan Chan

SummaryTraditional analysis of gene expression profiles use clustering to find groups of coexpressed genes which have similar expression patterns. However clustering is time consuming and could be diffcult for very large scale dataset. We proposed the idea of Discovering Distinct Patterns (DDP) in gene expression profiles. Since patterns showing by the gene expressions reveal their regulate mechanisms. It is significant to find all different patterns existing in the dataset when there is little prior knowledge. It is also a helpful start before taking on further analysis. We propose an algorithm for DDP by iteratively picking out pairs of gene expression patterns which have the largest dissimilarities. This method can also be used as preprocessing to initialize centers for clustering methods, like K-means. Experiments on both synthetic dataset and real gene expression datasets show our method is very effective in finding distinct patterns which have gene functional significance and is also effcient.


2005 ◽  
Vol 289 (4) ◽  
pp. L545-L553 ◽  
Author(s):  
Joseph Zabner ◽  
Todd E. Scheetz ◽  
Hakeem G. Almabrazi ◽  
Thomas L. Casavant ◽  
Jian Huang ◽  
...  

Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial chloride channel regulated by phosphorylation. Most of the disease-associated morbidity is the consequence of chronic lung infection with progressive tissue destruction. As an approach to investigate the cellular effects of CFTR mutations, we used large-scale microarray hybridization to contrast the gene expression profiles of well-differentiated primary cultures of human CF and non-CF airway epithelia grown under resting culture conditions. We surveyed the expression profiles for 10 non-CF and 10 ΔF508 homozygote samples. Of the 22,283 genes represented on the Affymetrix U133A GeneChip, we found evidence of significant changes in expression in 24 genes by two-sample t-test ( P < 0.00001). A second, three-filter method of comparative analysis found no significant differences between the groups. The levels of CFTR mRNA were comparable in both groups. There were no significant differences in the gene expression patterns between male and female CF specimens. There were 18 genes with significant increases and 6 genes with decreases in CF relative to non-CF samples. Although the function of many of the differentially expressed genes is unknown, one transcript that was elevated in CF, the KCl cotransporter (KCC4), is a candidate for further study. Overall, the results indicate that CFTR dysfunction has little direct impact on airway epithelial gene expression in samples grown under these conditions.


2020 ◽  
Author(s):  
Alexander Calderwood ◽  
Jo Hepworth ◽  
Shannon Woodhouse ◽  
Lorelei Bilham ◽  
D. Marc Jones ◽  
...  

AbstractThe timing of the floral transition affects reproduction and yield, however its regulation in crops remains poorly understood. Here, we use RNA-Seq to determine and compare gene expression dynamics through the floral transition in the model species Arabidopsis thaliana and the closely related crop Brassica rapa. A direct comparison of gene expression over time between species shows little similarity, which could lead to the inference that different gene regulatory networks are at play. However, these differences can be largely resolved by synchronisation, through curve registration, of gene expression profiles. We find that different registration functions are required for different genes, indicating that there is no common ‘developmental time’ to which Arabidopsis and B. rapa can be mapped through gene expression. Instead, the expression patterns of different genes progress at different rates. We find that co-regulated genes show similar changes in synchronisation between species, suggesting that similar gene regulatory sub-network structures may be active with different wiring between them. A detailed comparison of the regulation of the floral transition between Arabidopsis and B. rapa, and between two B. rapa accessions reveals different modes of regulation of the key floral integrator SOC1, and that the floral transition in the B. rapa accessions is triggered by different pathways, even when grown under the same environmental conditions. Our study adds to the mechanistic understanding of the regulatory network of flowering time in rapid cycling B. rapa under long days and highlights the importance of registration methods for the comparison of developmental gene expression data.


Mechanika ◽  
2020 ◽  
Vol 26 (6) ◽  
pp. 540-544
Author(s):  
Jayaraj JEEVAMALAR ◽  
Sundaresan RAMABALAN ◽  
Chinnamuthu SENTHILKUMAR

Modelling is used for correlating the relationship between the input process parameters and the output responses during the machining process. To characterize real-world systems of considerable complexity, an Artificial Neural Network (ANN) model is regularly used to replace the mathematical approximation of the relationship. This paper explains the methodological procedure and the outcome of the ANN modeling process for Electrical Discharge Drilling of Inconel 718 superalloy and hollow tubular copper as tool electrode. The most important process parameters in this work are peak current, pulse on time and pulse off time with machining performances of material removal rate and surface roughness. The experiments were performed by L20 Orthogonal Array. In such conditions, an Artificial Neural Network model is developed using MATLAB programming on the Feed Forward Back Propagation technique was used to predict the responses. The experimental data were separated into three parts to train, test the network and validate the model. The developed model has been confirmed experimentally for training and testing in considering the number of iterations and mean square error convergence criteria. The developed model results are to approximate the responses fairly exactly. The model has the mean correlation coefficient of 0.96558. Results revealed that the proposed model can be used for the prediction of the complex EDM drilling process.


2020 ◽  
Author(s):  
Jibril Abdulsalam ◽  
Abiodun Ismail Lawal ◽  
Ramadimetja Lizah Setsepu ◽  
Moshood Onifade ◽  
Samson Bada

Abstract Globally, the provision of energy is becoming an absolute necessity. Biomass resources are abundant and have been described as a potential alternative source of energy. However, it is important to assess the fuel characteristics of the various available biomass sources. Soft computing techniques are presented in this study to predict the mass yield (MY), energy yield (EY), and higher heating value (HHV) of hydrothermally carbonized biomass by using Gene Expression Programming (GEP), multiple-input single output-artificial neural network (MISO-ANN), and Multilinear regression (MLR). The three techniques were compared using statistical performance metrics. The coefficient of determination (R2), mean absolute error (MAE), and mean bias error (MBE) were used to evaluate the performance of the models. The MISO-ANN with 5-10-10-1 and 5-15-15-1 network architectures provided the most satisfactory performance of the three proposed models (R2 = 0.976, 0.955, 0.996; MAE = 2.24, 2.11, 0.93; MBE = 0.16, 0.37, 0.12) for MY, EY and HHV respectively. The GEP technique’s ability to predict hydrochar properties based on the input parameters was found to be satisfactory, while MLR provided an unsatisfactory predictive model. Sensitivity analysis was conducted, and the analysis revealed that volatile matter (VM) and temperature (Temp) have more influence on the MY, EY, and HHV.


Author(s):  
Mohammad S. Khrisat ◽  
Ziad A. Alqadi

<span>Multiple linear regressions are an important tool used to find the relationship between a set of variables used in various scientific experiments. In this article we are going to introduce a simple method of solving a multiple rectilinear regressions (MLR) problem that uses an artificial neural network to find the accurate and expected output from MLR problem. Different artificial neural network (ANN) types with different architecture will be tested, the error between the target outputs and the calculated ANN outputs will be investigated. A recommendation of using a certain type of ANN based on the experimental results will be raised.</span>


Author(s):  
Ana M Mesa ◽  
Jiude Mao ◽  
Theresa I Medrano ◽  
Nathan J Bivens ◽  
Alexander Jurkevich ◽  
...  

Abstract Histone proteins undergo various modifications that alter chromatin structure, including addition of methyl groups. Enhancer of homolog 2 (EZH2), is a histone methyltransferase that methylates lysine residue 27, and thereby, suppresses gene expression. EZH2 plays integral role in the uterus and other reproductive organs. We have previously shown that conditional deletion of uterine EZH2 results in increased proliferation of luminal and glandular epithelial cells, and RNAseq analyses reveal several uterine transcriptomic changes in Ezh2 conditional (c) knockout (KO) mice that can affect estrogen signaling pathways. To pinpoint the origin of such gene expression changes, we used the recently developed spatial transcriptomics (ST) method with the hypotheses that Ezh2cKO mice would predominantly demonstrate changes in epithelial cells and/or ablation of this gene would disrupt normal epithelial/stromal gene expression patterns. Uteri were collected from ovariectomized adult WT and Ezh2cKO mice and analyzed by ST. Asb4, Cxcl14, Dio2, and Igfbp5 were increased, Sult1d1, Mt3, and Lcn2 were reduced in Ezh2cKO uterine epithelium vs. WT epithelium. For Ezh2cKO uterine stroma, differentially expressed key hub genes included Cald1, Fbln1, Myh11, Acta2, and Tagln. Conditional loss of uterine Ezh2 also appears to shift the balance of gene expression profiles in epithelial vs. stromal tissue toward uterine epithelial cell and gland development and proliferation, consistent with uterine gland hyperplasia in these mice. Current findings provide further insight into how EZH2 may selectively affect uterine epithelial and stromal compartments. Additionally, these transcriptome data might provide the mechanistic understanding and valuable biomarkers for human endometrial disorders with epigenetic underpinnings.


Sign in / Sign up

Export Citation Format

Share Document