scholarly journals Intrusion Detection System Based on Decision Tree over Big Data in Fog Environment

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Kai Peng ◽  
Victor C. M. Leung ◽  
Lixin Zheng ◽  
Shangguang Wang ◽  
Chao Huang ◽  
...  

Fog computing, as the supplement of cloud computing, can provide low-latency services between mobile users and the cloud. However, fog devices may encounter security challenges as a result of the fog nodes being close to the end users and having limited computing ability. Traditional network attacks may destroy the system of fog nodes. Intrusion detection system (IDS) is a proactive security protection technology and can be used in the fog environment. Although IDS in tradition network has been well investigated, unfortunately directly using them in the fog environment may be inappropriate. Fog nodes produce massive amounts of data at all times, and, thus, enabling an IDS system over big data in the fog environment is of paramount importance. In this study, we propose an IDS system based on decision tree. Firstly, we propose a preprocessing algorithm to digitize the strings in the given dataset and then normalize the whole data, to ensure the quality of the input data so as to improve the efficiency of detection. Secondly, we use decision tree method for our IDS system, and then we compare this method with Naïve Bayesian method as well as KNN method. Both the 10% dataset and the full dataset are tested. Our proposed method not only completely detects four kinds of attacks but also enables the detection of twenty-two kinds of attacks. The experimental results show that our IDS system is effective and precise. Above all, our IDS system can be used in fog computing environment over big data.

2021 ◽  
Author(s):  
Farah Jemili ◽  
Hajer Bouras

In today’s world, Intrusion Detection System (IDS) is one of the significant tools used to the improvement of network security, by detecting attacks or abnormal data accesses. Most of existing IDS have many disadvantages such as high false alarm rates and low detection rates. For the IDS, dealing with distributed and massive data constitutes a challenge. Besides, dealing with imprecise data is another challenge. This paper proposes an Intrusion Detection System based on big data fuzzy analytics; Fuzzy C-Means (FCM) method is used to cluster and classify the pre-processed training dataset. The CTU-13 and the UNSW-NB15 are used as distributed and massive datasets to prove the feasibility of the method. The proposed system shows high performance in terms of accuracy, precision, detection rates, and false alarms.


2021 ◽  
pp. 1826-1839
Author(s):  
Sandeep Adhikari, Dr. Sunita Chaudhary

The exponential growth in the use of computers over networks, as well as the proliferation of applications that operate on different platforms, has drawn attention to network security. This paradigm takes advantage of security flaws in all operating systems that are both technically difficult and costly to fix. As a result, intrusion is used as a key to worldwide a computer resource's credibility, availability, and confidentiality. The Intrusion Detection System (IDS) is critical in detecting network anomalies and attacks. In this paper, the data mining principle is combined with IDS to efficiently and quickly identify important, secret data of interest to the user. The proposed algorithm addresses four issues: data classification, high levels of human interaction, lack of labeled data, and the effectiveness of distributed denial of service attacks. We're also working on a decision tree classifier that has a variety of parameters. The previous algorithm classified IDS up to 90% of the time and was not appropriate for large data sets. Our proposed algorithm was designed to accurately classify large data sets. Aside from that, we quantify a few more decision tree classifier parameters.


Sign in / Sign up

Export Citation Format

Share Document