scholarly journals Some Nonlinear Delay Volterra–Fredholm Type Dynamic Integral Inequalities on Time Scales

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yazhou Tian ◽  
A. A. El-Deeb ◽  
Fanwei Meng

We are devoted to studying a class of nonlinear delay Volterra–Fredholm type dynamic integral inequalities on time scales, which can provide explicit bounds on unknown functions. The obtained results can be utilized to investigate the qualitative theory of nonlinear delay Volterra–Fredholm type dynamic equations. An example is also presented to illustrate the theoretical results.

2011 ◽  
Vol 2011 ◽  
pp. 1-25 ◽  
Author(s):  
Fanwei Meng ◽  
Qinghua Feng ◽  
Bin Zheng

Some new Gronwall-Bellman-type delay integral inequalities in two independent variables on time scales are established, which provide a handy tool in the research of qualitative and quantitative properties of solutions of delay dynamic equations on time scales. The established inequalities generalize some of the results in the work of Zhang and Meng 2008, Pachpatte 2002, and Ma 2010.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Li Gao ◽  
Quanxin Zhang ◽  
Shouhua Liu

A class of third-order nonlinear delay dynamic equations on time scales is studied. By using the generalized Riccati transformation and the inequality technique, four new sufficient conditions which ensure that every solution is oscillatory or converges to zero are established. The results obtained essentially improve earlier ones. Some examples are considered to illustrate the main results.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Kelong Cheng ◽  
Chunxiang Guo

Some linear and nonlinear Gamidov type integral inequalities in two variables are established, which can give the explicit bounds on the solutions to a class of Volterra-Fredholm integral equations. Some examples of application are presented to show boundedness and uniqueness of solutions of a Volterra-Fredholm type integral equation.


2016 ◽  
Vol 66 (3) ◽  
Author(s):  
Xin Wu ◽  
Taixiang Sun

AbstractIn this paper, we study the oscillation criteria of the following higher order nonlinear delay dynamic equationon an arbitrary time scalewith


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Erbil Çetin ◽  
F. Serap Topal

Let be a periodic time scale in shifts . We use a fixed point theorem due to Krasnosel'skiĭ to show that nonlinear delay in dynamic equations of the form , has a periodic solution in shifts . We extend and unify periodic differential, difference, -difference, and -difference equations and more by a new periodicity concept on time scales.


Sign in / Sign up

Export Citation Format

Share Document