scholarly journals New Explicit Bounds on Gamidov Type Integral Inequalities for Functions in Two Variables and Their Applications

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Kelong Cheng ◽  
Chunxiang Guo

Some linear and nonlinear Gamidov type integral inequalities in two variables are established, which can give the explicit bounds on the solutions to a class of Volterra-Fredholm integral equations. Some examples of application are presented to show boundedness and uniqueness of solutions of a Volterra-Fredholm type integral equation.

2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
S. Saha Ray ◽  
P. K. Sahu

Integral equation has been one of the essential tools for various areas of applied mathematics. In this paper, we review different numerical methods for solving both linear and nonlinear Fredholm integral equations of second kind. The goal is to categorize the selected methods and assess their accuracy and efficiency. We discuss challenges faced by researchers in this field, and we emphasize the importance of interdisciplinary effort for advancing the study on numerical methods for solving integral equations.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 819
Author(s):  
Manish Kumar Bansal ◽  
Devendra Kumar ◽  
Jagdev Singh ◽  
Kottakkaran Sooppy Nisar

The main aim of this article is to study the Fredholm-type integral equation involving the incomplete H-function (IHF) and incomplete H-function in the kernel. Firstly, we solve an integral equation associated with the IHF with the aid of the theory of fractional calculus and Mellin transform. Next, we examine an integral equation pertaining to the incomplete H-function with the help of theory of fractional calculus and Mellin transform. Further, we indicate some known results by specializing the parameters of IHF and incomplete H-function. The results computed in this article are very general in nature and capable of giving many new and known results connected with integral equations and their solutions hitherto scattered in the literature. The derived results are very useful in solving various real world problems.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Kelong Cheng ◽  
Chunxiang Guo ◽  
Min Tang

Some Gronwall-Bellman-Gamidov type integral inequalities with power nonlinearity and their weakly singular analogues are established, which can give the explicit bound on solution of a class of nonlinear fractional integral equations. An example is presented to show the application for the qualitative study of solutions of a fractional integral equation with the Riemann-Liouville fractional operator.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Godwin Amechi Okeke ◽  
Daniel Francis

PurposeThe authors prove the existence and uniqueness of fixed point of mappings satisfying Geraghty-type contractions in the setting of preordered modular G-metric spaces. The authors apply the results in solving nonlinear Volterra-Fredholm-type integral equations. The results extend generalize compliment and include several known results as special cases.Design/methodology/approachThe results of this paper are theoretical and analytical in nature.FindingsThe authors prove the existence and uniqueness of fixed point of mappings satisfying Geraghty-type contractions in the setting of preordered modular G-metric spaces. apply the results in solving nonlinear Volterra-Fredholm-type integral equations. The results extend, generalize, compliment and include several known results as special cases.Research limitations/implicationsThe results are theoretical and analytical.Practical implicationsThe results were applied to solving nonlinear integral equations.Social implicationsThe results has several social applications.Originality/valueThe results of this paper are new.


2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Limian Zhao ◽  
Shanhe Wu ◽  
Wu-Sheng Wang

We establish a new nonlinear retarded Volterra-Fredholm type integral inequality. The upper bounds of the embedded unknown functions are estimated explicitly by using the theory of inequality and analytic techniques. Moreover, an application of our result to the retarded Volterra-Fredholm integral equations for estimation is given.


Author(s):  
H. M. Srivastava ◽  
R. K. Raina

AbstractThe authors begin by presenting a brief survey of the various useful methods of solving certain integral equations of Fredholm type. In particular, they apply the reduction techniques with a view to inverting a class of generalized hypergeometric integral transforms. This is observed to lead to an interesting generalization of the work of E. R. Love [9]. The Mellin transform technique for solving a general Fredholm type integral equation with the familiar H-function in the kernel is also considered.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yazhou Tian ◽  
A. A. El-Deeb ◽  
Fanwei Meng

We are devoted to studying a class of nonlinear delay Volterra–Fredholm type dynamic integral inequalities on time scales, which can provide explicit bounds on unknown functions. The obtained results can be utilized to investigate the qualitative theory of nonlinear delay Volterra–Fredholm type dynamic equations. An example is also presented to illustrate the theoretical results.


2010 ◽  
Vol 2 (2) ◽  
pp. 264-272 ◽  
Author(s):  
A. Shirin ◽  
M. S. Islam

In this paper, Bernstein piecewise polynomials are used to solve the integral equations numerically. A matrix formulation is given for a non-singular linear Fredholm Integral Equation by the technique of Galerkin method. In the Galerkin method, the Bernstein polynomials are used as the approximation of basis functions. Examples are considered to verify the effectiveness of the proposed derivations, and the numerical solutions guarantee the desired accuracy.  Keywords: Fredholm integral equation; Galerkin method; Bernstein polynomials. © 2010 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v2i2.4483               J. Sci. Res. 2 (2), 264-272 (2010) 


Author(s):  
Aleksandr N. Tynda ◽  
Konstantin A. Timoshenkov

In this paper we propose numerical methods for solving interior and exterior boundary-value problems for the Helmholtz and Laplace equations in complex three-dimensional domains. The method is based on their reduction to boundary integral equations in R2. Using the potentials of the simple and double layers, we obtain boundary integral equations of the Fredholm type with respect to unknown density for Dirichlet and Neumann boundary value problems. As a result of applying integral equations along the boundary of the domain, the dimension of problems is reduced by one. In order to approximate solutions of the obtained weakly singular Fredholm integral equations we suggest general numerical method based on spline approximation of solutions and on the use of adaptive cubatures that take into account the singularities of the kernels. When constructing cubature formulas, essentially non-uniform graded meshes are constructed with grading exponent that depends on the smoothness of the input data. The effectiveness of the method is illustrated with some numerical experiments.


Sign in / Sign up

Export Citation Format

Share Document